Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2023_3_a2, author = {Abdellatif Ghendir Aoun}, title = {Existence of solutions to multi-point boundary value problem of fractional order on the half-line}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {37--56}, publisher = {mathdoc}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2023_3_a2/} }
TY - JOUR AU - Abdellatif Ghendir Aoun TI - Existence of solutions to multi-point boundary value problem of fractional order on the half-line JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2023 SP - 37 EP - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2023_3_a2/ LA - en ID - BASM_2023_3_a2 ER -
%0 Journal Article %A Abdellatif Ghendir Aoun %T Existence of solutions to multi-point boundary value problem of fractional order on the half-line %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2023 %P 37-56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2023_3_a2/ %G en %F BASM_2023_3_a2
Abdellatif Ghendir Aoun. Existence of solutions to multi-point boundary value problem of fractional order on the half-line. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2023), pp. 37-56. http://geodesic.mathdoc.fr/item/BASM_2023_3_a2/
[1] Agarwal Ravi P., Meehan Maria, O'Regan Donal, Fixed point theory and applications, Cambridge Tracts in Mathematics, 141, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[2] Z. Bai and Y. Zhang, “The existence of solutions for a fractional multi-point boundary value problem”, Comput. Math. Appl., 60 (2010), 2364–2372 | DOI | MR | Zbl
[3] Y. Gholami, “Existence of an unbouded solution for multi-point boundary value problems of fractional differential equations on an infinite domain, class of Riemann-Liouville fractional differential equations”, FDC, 4:2 (2014), 125–136 | MR | Zbl
[4] K. Ghanbari, Y. Gholami, “Existence and multiplicity of positive solutions for m-point nonlinear fractional differential equations on the half-line”, EJDE, 2012:238 (2012), 1–15 | MR | Zbl
[5] A. Ghendir Aoun, “On a three-point fractional integral boundary value problem on the half-line”, JNFA, 2019, 16, 18 pp.
[6] J. He, X. Zhang, L. Liu, Y. Wu, Y. Gui, “Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions”, Boundary Value Problems, 2018 (2018), 189 | DOI | MR
[7] R. A. Khan and H. Khan, “On existence of solution for multi-points boundary value problem”, JFCA, 5 (2014), 121–132 | MR | Zbl
[8] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl
[9] B. Li, S. Sun, Y. Li and P. Zhao, “Multi-point boundary value problems for a class of Riemann-Liouville fractional differential equations”, Advances in Difference Equations, 2014 (2014), 151 | DOI | MR
[10] S. Liang and J. Zhang, “Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval”, Mathematical and Computer Modelling, 54 (2011), 1334–1346 | DOI | MR | Zbl
[11] K. Oldham and J. Spanier, The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, 1974, 240 pp. | MR | Zbl
[12] X. Su and S. Zhang, “Unbounded solutions to a boundary value problem of fractional order on the half-line”, Computers and Mathematics with Applications, 61 (2011), 1079–1087 | DOI | MR | Zbl
[13] C. Shen, H. Zhou and L. Yang, “On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval”, Boundary Value Problems, 2015 (2015), 241 | DOI | MR
[14] G. Wang, “Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval”, Applied Mathematics Letters, 47 (2015), 1–7 | DOI | MR | Zbl
[15] C. Yu, J. Wang and Y. Guo, “Solvability for integral boundary value problems of fractional differential equation on infinite intervals”, J. Nonlinear Sci. Appl., 9 (2016), 160–170 | DOI | MR | Zbl
[16] X. Zhao, W. Ge, “Unbounded solutions for a fractional boundary value problem on the infinite interval”, Acta. Appl. Math., 109 (2010), 495–505 | DOI | MR | Zbl