Global asymptotic stability of generalized homogeneous dynamical systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 52-82

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of the paper is to study the relationship between asymptotic stability and exponential stability of the solutions of generalized homogeneous nonautonomous dynamical systems. This problem is studied and solved within the framework of general non-autonomous (cocycle) dynamical system. The application of our general results for differential and difference equations is given.
@article{BASM_2023_2_a5,
     author = {David Cheban},
     title = {Global asymptotic stability of generalized homogeneous dynamical systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {52--82},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_2_a5/}
}
TY  - JOUR
AU  - David Cheban
TI  - Global asymptotic stability of generalized homogeneous dynamical systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 52
EP  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_2_a5/
LA  - en
ID  - BASM_2023_2_a5
ER  - 
%0 Journal Article
%A David Cheban
%T Global asymptotic stability of generalized homogeneous dynamical systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 52-82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_2_a5/
%G en
%F BASM_2023_2_a5
David Cheban. Global asymptotic stability of generalized homogeneous dynamical systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 52-82. http://geodesic.mathdoc.fr/item/BASM_2023_2_a5/