Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 19-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by using the Nevanlinna value distribution theory of meromorphic functions on an annulus, we deal with the growth properties of solutions of the linear differential equation $ f^{\left( k\right) }+B_{k-1}\left( z\right) f^{\left( k-1\right) }+\cdots +B_{1}\left( z\right) f^{\prime }+B_{0}\left( z\right) f=0$, where $k\geq 2$ is an integer and $B_{k-1}\left( z\right),\dots,B_{1}\left( z\right) ,B_{0}\left( z\right) $ are analytic on an annulus. Under some conditions on the coefficients, we obtain some results concerning the estimates of the order and the hyper-order of solutions of the above equation. The results obtained extend and improve those of Wu and Xuan in [16].
@article{BASM_2023_2_a2,
     author = {Benharrat Bela{\"\i}di},
     title = {Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--35},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/}
}
TY  - JOUR
AU  - Benharrat Belaïdi
TI  - Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 19
EP  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/
LA  - en
ID  - BASM_2023_2_a2
ER  - 
%0 Journal Article
%A Benharrat Belaïdi
%T Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 19-35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/
%G en
%F BASM_2023_2_a2
Benharrat Belaïdi. Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 19-35. http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/