Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 19-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by using the Nevanlinna value distribution theory of meromorphic functions on an annulus, we deal with the growth properties of solutions of the linear differential equation $ f^{\left( k\right) }+B_{k-1}\left( z\right) f^{\left( k-1\right) }+\cdots +B_{1}\left( z\right) f^{\prime }+B_{0}\left( z\right) f=0$, where $k\geq 2$ is an integer and $B_{k-1}\left( z\right),\dots,B_{1}\left( z\right) ,B_{0}\left( z\right) $ are analytic on an annulus. Under some conditions on the coefficients, we obtain some results concerning the estimates of the order and the hyper-order of solutions of the above equation. The results obtained extend and improve those of Wu and Xuan in [16].
@article{BASM_2023_2_a2,
     author = {Benharrat Bela{\"\i}di},
     title = {Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--35},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/}
}
TY  - JOUR
AU  - Benharrat Belaïdi
TI  - Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 19
EP  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/
LA  - en
ID  - BASM_2023_2_a2
ER  - 
%0 Journal Article
%A Benharrat Belaïdi
%T Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 19-35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/
%G en
%F BASM_2023_2_a2
Benharrat Belaïdi. Growth properties of solutions to higher order complex linear differential equations with analytic coefficients in the annulus. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 19-35. http://geodesic.mathdoc.fr/item/BASM_2023_2_a2/

[1] S. Axler, “Harmonic functions from a complex analysis viewpoint”, Amer. Math. Monthly, 93:4 (1986), 246–258 | DOI | MR

[2] B. Belaïdi, “Growth of solutions of complex differential equations in a sector of the unit disc”, Electron. J. Differential Equations, 2019, 98, 15 pp. | MR | Zbl

[3] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, 236, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl

[4] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964 | MR | Zbl

[5] J. Heittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. Math. Diss., 122, 2000, 54 pp. | MR | Zbl

[6] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. I”, Mat. Stud., 23:1 (2005), 19–30 | MR | Zbl

[7] A. Ya. Khrystiyanyn, A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli. II”, Mat. Stud., 24:1 (2005), 57–68 | MR | Zbl

[8] A. A. Kondratyuk, I. Laine, “Meromorphic functions in multiply connected domains”, Fourier series methods in complex analysis, Univ. Joensuu Dept. Math. Rep. Ser., 10, Univ. Joensuu, Joensuu, 2006, 9–111 | MR | Zbl

[9] R. Korhonen, “Nevanlinna theory in an annulus”, Value distribution theory and related topics, Adv. Complex Anal. Appl., 3, Kluwer Acad. Publ., Boston, MA, 2004, 167–179 | MR | Zbl

[10] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, Walter de Gruyter Co., Berlin, 1993 | MR

[11] J. Long, “On [p, q]-order of solutions of higher-order complex linear differential equations in an angular domain of unit disc”, J. Math. Study, 50:1 (2017), 91–100 | DOI | MR | Zbl

[12] M. Lund, Z. Ye, “Logarithmic derivatives in annuli”, J. Math. Anal. Appl., 356:2 (2009), 441–452 | DOI | MR | Zbl

[13] M. Lund, Z. Ye, “Nevanlinna theory of meromorphic functions on annuli”, Sci. China Math., 53:3 (2010), 547–554 | DOI | MR | Zbl

[14] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975 | MR | Zbl

[15] N. Wu, “On the growth order of solutions of linear differential equations in a sector of the unit disk”, Results Math., 65:1-2 (2014), 57–66 | DOI | MR | Zbl

[16] N. Wu, Z. Xuan, “On the growth of solutions to linear complex differential equations on annuli”, Bull. Korean Math. Soc., 56:2 (2019), 461–470 | MR | Zbl

[17] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003 | MR | Zbl

[18] M. A. Zemirni, B. Belaïdi, “[p,q]-order of solutions of complex differential equations in a sector of the unit disc”, An. Univ. Craiova Ser. Mat. Inform., 45:1 (2018), 37–49 | MR | Zbl