The second Hankel determinant for $k$-symmetrical functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we find the upper bound of the second Hankel determinant $|a_2a_4-a_3^2|$ for subclasses of starlike and convex functions with respect to $k$-symmetric points.
@article{BASM_2023_2_a0,
     author = {Fuad Alsarari and Satyanarayana Latha and Maslina Darus},
     title = {The second {Hankel} determinant for $k$-symmetrical functions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--10},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_2_a0/}
}
TY  - JOUR
AU  - Fuad Alsarari
AU  - Satyanarayana Latha
AU  - Maslina Darus
TI  - The second Hankel determinant for $k$-symmetrical functions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 3
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_2_a0/
LA  - en
ID  - BASM_2023_2_a0
ER  - 
%0 Journal Article
%A Fuad Alsarari
%A Satyanarayana Latha
%A Maslina Darus
%T The second Hankel determinant for $k$-symmetrical functions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 3-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_2_a0/
%G en
%F BASM_2023_2_a0
Fuad Alsarari; Satyanarayana Latha; Maslina Darus. The second Hankel determinant for $k$-symmetrical functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2023), pp. 3-10. http://geodesic.mathdoc.fr/item/BASM_2023_2_a0/