Counting configurations of limit cycles and centers
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 78-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We present several results on the determination of the number and distribution of limit cycles or centers for planar systems of differential equations. In most cases, the study of a recurrence is one of the key points of our approach. These results include the counting of the number of configurations of stabilities of nested limit cycles, the study of the number of different configurations of a given number of limit cycles, the proof of some quadratic lower bounds for Hilbert numbers and some questions about the number of centers for planar polynomial vector fields.
@article{BASM_2023_1_a5,
     author = {Armengol Gasull and Antoni Guillamon and V{\'\i}ctor Ma\~nosa},
     title = {Counting configurations of limit cycles and centers},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {78--96},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_1_a5/}
}
TY  - JOUR
AU  - Armengol Gasull
AU  - Antoni Guillamon
AU  - Víctor Mañosa
TI  - Counting configurations of limit cycles and centers
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 78
EP  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_1_a5/
LA  - en
ID  - BASM_2023_1_a5
ER  - 
%0 Journal Article
%A Armengol Gasull
%A Antoni Guillamon
%A Víctor Mañosa
%T Counting configurations of limit cycles and centers
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 78-96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_1_a5/
%G en
%F BASM_2023_1_a5
Armengol Gasull; Antoni Guillamon; Víctor Mañosa. Counting configurations of limit cycles and centers. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 78-96. http://geodesic.mathdoc.fr/item/BASM_2023_1_a5/