Time-reversibility and ivariants of some $3$-dim systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 16-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We study time-reversibility and invariants of the group of transformations $x\to x, ~y\to \alpha y, ~z \to \alpha ^{-1}z$ for three-dimensional polynomial systems with $0:1:-1$ resonant singular point at the origin. An algorithm to find the Zariski closure of the set of time-reversible systems in the space of parameters is proposed. The interconnection of time-reversibility and invariants of the group mentioned above is discussed.
@article{BASM_2023_1_a2,
     author = {Tatjana Petek and Valery G. Romanovski},
     title = {Time-reversibility and ivariants of some $3$-dim systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {16--28},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2023_1_a2/}
}
TY  - JOUR
AU  - Tatjana Petek
AU  - Valery G. Romanovski
TI  - Time-reversibility and ivariants of some $3$-dim systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2023
SP  - 16
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2023_1_a2/
LA  - en
ID  - BASM_2023_1_a2
ER  - 
%0 Journal Article
%A Tatjana Petek
%A Valery G. Romanovski
%T Time-reversibility and ivariants of some $3$-dim systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2023
%P 16-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2023_1_a2/
%G en
%F BASM_2023_1_a2
Tatjana Petek; Valery G. Romanovski. Time-reversibility and ivariants of some $3$-dim systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2023), pp. 16-28. http://geodesic.mathdoc.fr/item/BASM_2023_1_a2/