Poisson Stable Motions and Global Attractors of Symmetric Monotone Nonautonomous Dynamical Systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 56-94

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is dedicated to the study of the problem of existence of Poisson stable (Bohr/Levitan almost periodic, almost automorphic, almost recurrent, recurrent, pseudo-periodic, pseudo-recurrent and Poisson stable) motions of symmetric monotone non-autonomous dynamical systems (NDS). It is proved that every precompact motion of such system is asymptotically Poisson stable. We give also the description of the structure of compact global attractor for monotone NDS with symmetry. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We apply our general results to the study of the problem of existence of different classes of Poisson stable solutions and global attractors for a chemical reaction network and nonautonomous translation-invariant difference equations.
@article{BASM_2022_3_a5,
     author = {David Cheban},
     title = {Poisson {Stable} {Motions} and {Global} {Attractors} of {Symmetric} {Monotone} {Nonautonomous} {Dynamical} {Systems}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {56--94},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_3_a5/}
}
TY  - JOUR
AU  - David Cheban
TI  - Poisson Stable Motions and Global Attractors of Symmetric Monotone Nonautonomous Dynamical Systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 56
EP  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_3_a5/
LA  - ru
ID  - BASM_2022_3_a5
ER  - 
%0 Journal Article
%A David Cheban
%T Poisson Stable Motions and Global Attractors of Symmetric Monotone Nonautonomous Dynamical Systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 56-94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_3_a5/
%G ru
%F BASM_2022_3_a5
David Cheban. Poisson Stable Motions and Global Attractors of Symmetric Monotone Nonautonomous Dynamical Systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 56-94. http://geodesic.mathdoc.fr/item/BASM_2022_3_a5/