Construction of medial ternary self-orthogonal quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 41-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms for checking if a medial ternary quasigroup has a set of six triple-wise orthogonal principal parastrophes and a set of six triple-wise strongly orthogonal principal parastrophes are found. It is proved that $n$-ary strongly self-orthogonal linear (including medial) quasigroups do not exist when $n>3$.
@article{BASM_2022_3_a4,
     author = {Iryna Fryz and Fedir Sokhatsky},
     title = {Construction of medial ternary self-orthogonal quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {41--55},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_3_a4/}
}
TY  - JOUR
AU  - Iryna Fryz
AU  - Fedir Sokhatsky
TI  - Construction of medial ternary self-orthogonal quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 41
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_3_a4/
LA  - en
ID  - BASM_2022_3_a4
ER  - 
%0 Journal Article
%A Iryna Fryz
%A Fedir Sokhatsky
%T Construction of medial ternary self-orthogonal quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 41-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_3_a4/
%G en
%F BASM_2022_3_a4
Iryna Fryz; Fedir Sokhatsky. Construction of medial ternary self-orthogonal quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 41-55. http://geodesic.mathdoc.fr/item/BASM_2022_3_a4/

[1] Ethier J. T., Mullen G. L., “Strong forms of orthogonality for sets of hypercubes”, Discrete Math., 312:12-13 (2012), 2050–2061 | DOI | MR | Zbl

[2] Fryz I. V., Sokhatsky F. M., “Block composition algorithm for constructing orthogonal $n$-ary operations”, Discrete Math., 340:8 (2017), 1957–1966 | DOI | MR | Zbl

[3] Belyavskaya G. B., Mullen G. L., “Orthogonal hypercubes and $n$-ary operations”, Quasigroups Related System, 13:1 (2005), 73–86 | MR | Zbl

[4] Markovsky S., Mileva A., “On construction of orthogonal $d$-ary operations”, Publications de L'institut Mathématique, Nouvelle série, 101 (115) (2017), 109–119 | DOI

[5] Evans T., “The construction of orthogonal $k$-skeins and latin $k$-cubes”, Aequationes Math., 14:3 (1976), 485–491 | DOI | MR | Zbl

[6] Trenkler M., “On orthogonal latin $p$-dimensional cubes”, Czech. Math. J., 55:3 (2005), 725–728 | DOI | Zbl

[7] Belousov V. D., “Parastrophic-orthogonal quasigroups”, Quasigroups Related Systems, 13:1 (2005), 25–72 | MR | Zbl

[8] Belyavskaya G. B., Popovich T. V., “Totally conjugate orthogonal quasigroups and complete graphs”, J. Math. Sci., 185:2 (2012), 184–191 | DOI | MR | Zbl

[9] Syrbu P. N., “Orthogonality and self-orthogonality $n$-ary operations”, Mat. Issled., 95 (1987), 121–129 (Russian) | MR | Zbl

[10] Syrbu P. N., “On self-orthogonality of $n$-ary operations”, Mat. Issled., 102 (1988), 92–96 (Russian) | MR | Zbl

[11] Syrbu P., Ceban D., “On paratopies of orthogonal systems of ternary quasigroups. I”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 1:80 (2016), 91–117 | MR | Zbl

[12] Syrbu P., Ceban D., “On orthogonal systems of ternary quasigroups admitting nontrivial paratopies”, Quasigroups Related Systems, 25:1 (2017), 133–150 | MR | Zbl

[13] Belyavskaya G., Mullen G. L., “Strongly orthogonal and uniformly orthogonal many-place operations”, Algebra Discrete Math., 5:1 (2006), 1–17 | MR

[14] Sokhatsky F., “Factorization of operations of medial and abelian algebras”, Visnyk DonNY. Ser. A: Pryrodnychi nauky, 1-2 (2017), 84–96 | DOI

[15] Belousov V. D., $n$-ary quasigroups, Stiintsa, Chisinau, 1972, 228 pp. (Russian)