Optimal control of jump-diffusion processes with random parameters
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 22-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X(t)$ be a controlled jump-diffusion process starting at $x \in [a,b]$ and whose infinitesimal parameters vary according to a continuous-time Markov chain. The aim is to minimize the expected value of a cost function with quadratic control costs until $X(t)$ leaves the interval $(a,b)$, and a termination cost that depends on the final value of $X(t)$. Exact and explicit solutions are obtained for important processes.
@article{BASM_2022_3_a2,
     author = {Mario Lefebvre},
     title = {Optimal control of jump-diffusion processes with random parameters},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {22--29},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_3_a2/}
}
TY  - JOUR
AU  - Mario Lefebvre
TI  - Optimal control of jump-diffusion processes with random parameters
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 22
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_3_a2/
LA  - en
ID  - BASM_2022_3_a2
ER  - 
%0 Journal Article
%A Mario Lefebvre
%T Optimal control of jump-diffusion processes with random parameters
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 22-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_3_a2/
%G en
%F BASM_2022_3_a2
Mario Lefebvre. Optimal control of jump-diffusion processes with random parameters. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 22-29. http://geodesic.mathdoc.fr/item/BASM_2022_3_a2/