Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend the Volkenborn integral and Shnirelman integral for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces over $\mathbb{Q}_{p}$ and $\mathbb{C}_{p}$ respectively. When the ground field is a complete non-Archimedean valued field, which is also algebraically closed, we give some functional calculus for groups of infinitesimal generator $A$ such that $A$ is a nilpotent operator on finite-dimensional non-Archimedean Banach spaces.
@article{BASM_2022_3_a0,
     author = {J. Ettayb},
     title = {Some integrals for groups of bounded linear operators on finite-dimensional {non-Archimedean} {Banach} spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--14},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_3_a0/}
}
TY  - JOUR
AU  - J. Ettayb
TI  - Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 3
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_3_a0/
LA  - en
ID  - BASM_2022_3_a0
ER  - 
%0 Journal Article
%A J. Ettayb
%T Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 3-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_3_a0/
%G en
%F BASM_2022_3_a0
J. Ettayb. Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2022), pp. 3-14. http://geodesic.mathdoc.fr/item/BASM_2022_3_a0/