Limits of solutions to the semilinear plate equation with small parameter
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 76-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence of the limits of solutions to the semilinear plate equation with boundary Dirichlet condition with a small parameter coefficient of the second order derivative in time. We establish the convergence of solutions to the perturbed problem and their derivatives in spacial variables to the corresponding solutions to the unperturbed problem as the small parameter tends to zero.
@article{BASM_2022_2_a5,
     author = {Andrei Perjan and Galina Rusu},
     title = {Limits of solutions to the semilinear plate equation with small parameter},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {76--102},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_2_a5/}
}
TY  - JOUR
AU  - Andrei Perjan
AU  - Galina Rusu
TI  - Limits of solutions to the semilinear plate equation with small parameter
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 76
EP  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_2_a5/
LA  - en
ID  - BASM_2022_2_a5
ER  - 
%0 Journal Article
%A Andrei Perjan
%A Galina Rusu
%T Limits of solutions to the semilinear plate equation with small parameter
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 76-102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_2_a5/
%G en
%F BASM_2022_2_a5
Andrei Perjan; Galina Rusu. Limits of solutions to the semilinear plate equation with small parameter. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 76-102. http://geodesic.mathdoc.fr/item/BASM_2022_2_a5/