On recursively differentiable $k$-quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 68-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recursive differentiability of linear $k$-quasigroups $(k\geq 2)$ is studied in the present work. A $k$-quasigroup is recursively $r$-differentiable ($r$ is a natural number) if its recursive derivatives of order up to $r$ are quasigroup operations. We give necessary and sufficient conditions of recursive $1$-differentiability (respectively, $r$-differentiability) of the $k$-group $(Q,B)$, where $B(x_1,..., x_k)=x_1 \cdot x_2 \cdot ... \cdot x_k , \forall x_1 , x_2 ,..., x_k \in Q,$ and $(Q, \cdot)$ is a finite binary group (respectively, a finite abelian binary group). The second result is a generalization of a known criterion of recursive $r$-differentiability of finite binary abelian groups [4]. Also we consider a method of construction of recursively $r$-differentiable finite binary quasigroups of high order $r$. The maximum known values of the parameter $r$ for binary quasigroups of order up to $200$ are presented.
@article{BASM_2022_2_a4,
     author = {Parascovia Syrbu and Elena Cuzne\c{t}ov},
     title = {On recursively differentiable $k$-quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {68--75},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_2_a4/}
}
TY  - JOUR
AU  - Parascovia Syrbu
AU  - Elena Cuzneţov
TI  - On recursively differentiable $k$-quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 68
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_2_a4/
LA  - en
ID  - BASM_2022_2_a4
ER  - 
%0 Journal Article
%A Parascovia Syrbu
%A Elena Cuzneţov
%T On recursively differentiable $k$-quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 68-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_2_a4/
%G en
%F BASM_2022_2_a4
Parascovia Syrbu; Elena Cuzneţov. On recursively differentiable $k$-quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 68-75. http://geodesic.mathdoc.fr/item/BASM_2022_2_a4/

[1] Couselo E., Gonzalez S., Markov V., Nechaev A., “Recursive MDS-codes and recursive differentiable quasigroups”, Discret. Mat., 10:2 (1998), 3–29 (Russian) | MR

[2] Couselo E., Gonzalez S., Markov V., Nechaev A., “Parameters of recursive MDS-codes”, Discrete Math. Appl., 10 (2000), 433–453 | DOI | MR

[3] Abashin A. S., “Linear recursive MDS codes of dimentions 2 and 3”, Discret. Mat., 12:2 (2000), 140–153 (Russian) | MR

[4] Izbash V., Syrbu P., “Recursively differentiable quasigroups and complete recursive codes”, Commentat. Math. Univ. Carol., 45:2 (2004), 257–263 | MR

[5] Keedwell A.D., Denes J., Latin Squares and Their Applications, Second edition, North Holland, 2015 | DOI | MR

[6] Belyavskaya G. B., “Recursively $r$-differentiable quasigroups within $S$-systems and MDS-codes”, Quasigroups Relat. Syst., 20:2 (2012), 157–168 | MR

[7] Larionova-Cojocaru I., Syrbu P., “On recursive differentiability of binary quasigroups”, Studia Universitatis Moldaviae, Seria Ştiinţe exacte şi economice, 2015, no. 2 (82), 53–60