On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 19-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study a class of two-dimensional integral equations on a quarter-plane with monotone nonlinearity and substochastic kernel. With specific representations of the kernel and nonlinearity, an equation of this kind arises in various fields of natural science. In particular, such equations occur in the dynamical theory of $p$-adic open-closed strings for the scalar field of tachyons, in the mathematical theory of the geographical spread of a pandemic, in the kinetic theory of gases, and in the theory of radiative transfer in inhomogeneous media. We prove constructive theorems on the existence of a nontrivial nonnegative and bounded solution. For one important particular case, the existence of a one-parameter family of nonnegative and bounded solutions is also established. Moreover, the asymptotic behavior at infinity of each solution from the given family os studied. At the end of the paper, specific particular examples (of an applied nature) of the kernel and nonlinearity that satisfy all the conditions of the proven statements are given.
@article{BASM_2022_2_a1,
     author = {Kh. A. Khachatryan and H. S. Petrosyan and S. M. Andriyan},
     title = {On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--38},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_2_a1/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
AU  - S. M. Andriyan
TI  - On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 19
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_2_a1/
LA  - en
ID  - BASM_2022_2_a1
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%A S. M. Andriyan
%T On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 19-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_2_a1/
%G en
%F BASM_2022_2_a1
Kh. A. Khachatryan; H. S. Petrosyan; S. M. Andriyan. On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 19-38. http://geodesic.mathdoc.fr/item/BASM_2022_2_a1/

[1] Brekke L., Freund P. G. O., Olson M., Witten E., “Non-archimedean string dynamics”, Nucl. Phys. B, 302:3 (1988), 365–402 | DOI | MR

[2] Vladimirov V. S., “Nonlinear equations for p-adic open, closed, and open-closed strings”, Theor. Math. Phys., 149:3 (2006), 1604–1616 | DOI | MR

[3] Diekmann O., “Thresholds and traveling waves for the geographical spread of infection”, J. Math. Biol., 6 (1978), 109–130 | DOI | MR

[4] Diekmann O., Kapper H. G., “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Anal., Theory Methods Appl., 2 (1978), 721–737 | DOI | MR

[5] Cercignani C., The Boltzmann equation and its applications, Applied Mathematical Sciences, 67, Springer-Verlag, New York, 1988, 455 pp. | DOI | MR

[6] Khachatryan A. Kh., Khachatryan Kh. A., “Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave”, Theor. Math. Phys., 189:2 (2016), 1609–1623 | DOI | MR

[7] Sobolev V. V., “Milne's problem for an inhomogeneous atmosphere”, Dokl. Akad. Nauk SSSR, 239:3 (1978), 558–561 | MR

[8] Sergeev A. G., Khachatryan Kh. A., “On the solvability of a class of nonlinear integral equations in the problem of a spread of an epidemic”, Trans. Mosc. Math. Soc., 2019, 95–111 | MR

[9] Khachatryan Kh. A., Petrosyan H. S., “On bounded solutions of a class of nonlinear integral equations in the plane and the Urysohn equation in a quadrant of the plane”, Ukr. Math. J., 73:5 (2021), 811–829 | DOI | MR

[10] Khachatryan Kh. A., Petrosyan A. S., “Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations”, Trans. Mosc. Math. Soc., 2021, 259–271 | MR

[11] Arabajian L. G., “On existence of nontrivial solutions of certain integral equations of Hammerstein type”, Izv. Nats. Akad. Nauk Armen., Mat., 32:1 (1997), 21–28 | MR

[12] Khachatryan Kh. A., “Positive solubility of some classes of non-linear integral equations of Hammerstein type on the semi-axis and on the whole line”, Izv. Math., 79:2 (2015), 411–430 | DOI | MR

[13] Diekmann O., “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differ. Equations, 33 (1979), 58–73 | DOI | MR

[14] Joukovskaya L. V., “Iterative method for solving nonlinear integral equations describing rolling solutions in string theory”, Theor. Math. Phys., 146:3 (2006), 335–342 | DOI | MR

[15] Khachatryan Kh. A., “On the solubility of certain classes of non-linear integral equations in p-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI | MR

[16] Khachatryan Kh. A., “On the solvability of a boundary value problem in p-adic string theory”, Trans. Mosc. Math. Soc., 2018, 101–115 | DOI | MR

[17] Kolmogorov A. N., Fomin V. C., Elements of the theory of functions and functional analysis, FIZMATLIT, M., 2004 | MR

[18] Arabadzhyan L. G., “On an integral equation of transport theory in an inhomogeneous medium”, Differ. Uravn., 23:9 (1987), 1618–1622 (in Russian) | MR