Isostrophy Bryant-Schneider Group-Invariant of Bol Loops
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the recent past, Grecu and Syrbu (in no order of preference) have jointly and individually reported some results on isostrophy invariants of Bol loops. Also, the Bryant-Schneider group of a loop has been found important in the study of the isotopy-isomorphy of some varieties of loops (e.g. Bol loops, Moufang loops, Osborn loops). In this current work, the Bryant-Schneider group of a middle Bol loop was linked with some of the isostrophy-group invariance results of Grecu and Syrbu. In particular, it was shown that some subgroups of the Bryant-Schneider group of a middle Bol loop are equal (or isomorphic) to the automorphism and pseudo-aumorphism groups of its corresponding right (left) Bol loop. Some elements of the Bryant-Schneider group of a middle Bol loop were shown to induce automorphisms and middle pseudo-automorphisms. It was discovered that if a middle Bol loop is of exponent $2$, then, its corresponding right (left) Bol loop is a left (right) G-loop.
@article{BASM_2022_2_a0,
     author = {T\`em{\'\i}t\'op\'e Gb\'ol\'ah\`an Ja{\'\i}y\'eol\'a and Benard Osoba and Anthony Oyem},
     title = {Isostrophy {Bryant-Schneider} {Group-Invariant} of {Bol} {Loops}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--18},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_2_a0/}
}
TY  - JOUR
AU  - Tèmítópé Gbóláhàn Jaíyéolá
AU  - Benard Osoba
AU  - Anthony Oyem
TI  - Isostrophy Bryant-Schneider Group-Invariant of Bol Loops
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 3
EP  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_2_a0/
LA  - ru
ID  - BASM_2022_2_a0
ER  - 
%0 Journal Article
%A Tèmítópé Gbóláhàn Jaíyéolá
%A Benard Osoba
%A Anthony Oyem
%T Isostrophy Bryant-Schneider Group-Invariant of Bol Loops
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 3-18
%N 2
%U http://geodesic.mathdoc.fr/item/BASM_2022_2_a0/
%G ru
%F BASM_2022_2_a0
Tèmítópé Gbóláhàn Jaíyéolá; Benard Osoba; Anthony Oyem. Isostrophy Bryant-Schneider Group-Invariant of Bol Loops. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2022), pp. 3-18. http://geodesic.mathdoc.fr/item/BASM_2022_2_a0/

[1] Adeniran, J. O., “More on the Bryant-Schneider group of a conjugacy closed loop”, Proc. Jangjeon Math. Soc., 5:1 (2002), 35–46 | MR

[2] Adeniran, J. O., “On the Bryant-Schneider group of a conjugacy closed loop”, An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat., 45:2 (1999), 241–246 | MR

[3] Adeniran, J. O., “On the Bryant-Schneider group of a conjugacy closed loop”, Hadronic J., 22:3 (1999), 305–311 | MR

[4] Adeniran, J. O., “Some properties of the Bryant-Schneider groups of certain Bol loops”, Proc. Jangjeon Math. Soc., 6:1 (2003), 71–80 | MR

[5] Adeniran, J. O., Jaíyéọlá, T. G., “On central loops and the central square property”, Quasigroups Relat. Syst., 15:2 (2007), 191–200 | MR

[6] Adeniran, J. O., Akinleye, S. A. and Alakoya, T. O., “On the Core and Some Isotopic Characterisations of Generalised Bol Loops”, J. of the Nigerian Asso. Mathematical Phy., 1 (2015), 99–104

[7] Adeniran, J. O., Jaiyéọlá T. G. and Idowu, K. A., “Holomorph of generalized Bol loops”, Novi Sad J. Math., 44:1 (2014), 37–51 | MR

[8] Adeniran, J. O., Jaiyéọlá T. G. and Idowu, K. A., “On the isotopic characterizations of generalized Bol loops”, Proyecciones, 41:4 (2022), 805–823 | DOI | MR

[9] Belousov, V. D., Grundlagen der Theorie der Quasigruppen und Loops, Verlag. “Nauka”, M., 1967 (Russian)

[10] Belousov, V. D., Algebraic nets and quasigroups, “Shtiintsa”, Kishinev, 1971, 166 pp. (Russian) | MR

[11] Belousov, V. D. and Sokolov, E. I., “$n$-ary inverse quasigroups (${\rm J}$-quasigroups)”, Mat. Issled., 102 (1988), 26–36 (Russian) | MR

[12] Burris, S. and Sankappanavar, H. P., A course in universal algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, New York-Berlin, xvi+1981 | DOI | MR

[13] Drapal, A. and Shcherbacov, V., “Identities and the group of isostrophisms”, Commentat. Math. Univ. Carol., 53:3 (2012), 347–374 | MR

[14] Drapal, A. and Syrbu, P., “Middle Bruck loops and the total multiplication group”, Result. Math., 77:4 (2022), 27 pp. | DOI | MR

[15] Foguel, T., Kinyon, M. K. and Phillips, J. D., “On twisted subgroups and Bol loops of odd order”, Rocky Mt. J. Math., 36:1 (2006), 183–212 | DOI | MR

[16] Grecu, I., “On multiplication groups of isostrophic quasigroups”, Proceedings of the Third Conference of Mathematical Society of Moldova, IMCS-50 (Chisinau, Republic of Moldova, 2014), 78–81

[17] Grecu, I. and Syrbu, P., “On some isostrophy invariants of Bol loops”, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys., 54:5 (2012), 145–154 | MR

[18] Grecu, I. and Syrbu, P., “Commutants of middle Bol loops”, Quasigroups Relat. Syst., 22:1 (2014), 81–88 | MR

[19] Gvaramiya A., “On a class of loops”, Uch. Zapiski MAPL, 375, 1971, 25–34 (Russian) | MR

[20] Jaiyéọlá, T. G., “On Smarandache Bryant Schneider group of a Smarandache loop”, Int. J. Math. Comb., 2 (2008), 51–63 | DOI | MR

[21] Jaiyéọlá, T. G., Adéníran, J. O. and Sòlárìn, A. R. T., “Some necessary conditions for the existence of a finite Osborn loop with trivial nucleus”, Algebras Groups Geom., 28:4 (2011), 363–379 | MR

[22] Jaiyéọlá, T. G., Adéníran, J. O. and Agboola, A. A. A., “On the Second Bryant Schneider group of universal Osborn loops”, ROMAI J., 9:1 (2013), 37–50 | MR

[23] Jaiyéọlá, T. G., David, S. P. and Oyebo, Y. T., “New algebraic properties of middle Bol loops”, ROMAI J., 11:2 (2015), 161–183 | MR

[24] Jaiyéọlá, T. G, David, S. P., Ilojide E., Oyebo, Y. T., “Holomorphic structure of middle Bol loops”, Khayyam J. Math., 3:2 (2017), 172–184 | MR

[25] Jaiyéọlá, T. G., David, S. P. and Oyebola, O. O., “New algebraic properties of middle Bol loops II”, Proyecciones, 40:1 (2021), 85–106 | DOI | MR

[26] Jaiyéọlá, T. G., “Basic properties of second Smarandache Bol loops”, Int. J. Math. Comb., 2 (2009), 11–20 | DOI | MR

[27] Jaiyéọlá, T. G., “Smarandache isotopy of second Smarandache Bol loops”, Scientia Magna Journal, 7:1 (2011), 82–93 | DOI

[28] Jaiyéọlá, T. G., A study of new concepts in Smarandache quasigroups and loops, InfoLearnQuest (ILQ), Ann Arbor, MI, 2009, 127 pp. | MR

[29] Jaiyéọlá, T. G. and Popoola, B. A., “Holomorph of generalized Bol loops II”, Discuss. Math., Gen. Algebra Appl., 35:1 (2015), 59–78 | DOI | MR

[30] Osoba, B., “Smarandache nuclei of second Smarandache Bol loops”, Scientia Magna Journal, 17:1 (2022), 11–21 | MR

[31] Osoba, B. and Oyebo, Y. T., “On multiplication groups of middle Bol loop related to left Bol loop”, Int. J. Math. and Appl., 6:4 (2018), 149–155

[32] Osoba, B. and Oyebo, Y. T., “On Relationship of Multiplication Groups and Isostrophic quasogroups”, International Journal of Mathematics Trends and Technology (IJMTT), 58:2 (2018), 80–84 | DOI

[33] Osoba, B. and Jaiyéọlá, T. G., “Algebraic connections between right and middle Bol loops and their cores”, Quasigroups Relat. Syst., 30:1 (2022), 149–160 | MR

[34] Osoba, B. and Oyebo Y. T., “More Results on the Algebraic Properties of Middle Bol loops”, Journal of the Nigerian Mathematical Society, 41:2 (2022), 129–142 | MR

[35] Pflugfelder, H. O., Quasigroups and loops: introduction, Sigma Series in Pure Mathematics, 7, Heldermann Verlag, Berlin, 1990, 147 pp. | MR

[36] Robinson, D. A., “The Bryant-Schneider group of a loop”, Ann. Soc. Sci. Bruxelles, Ser. I, 94 (1980), 69–81 | MR

[37] Shcherbacov, V. A., A-nuclei and A-centers of quasigroup, v. 5, Institute of Mathematics and Computer Science Academiy of Science of Moldova, Academiei str., Chisinau, MD-2028, Moldova, 2011 | MR

[38] Shcherbacov, V. A., Elements of quasigroup theory and applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2017, 576 pp. | MR

[39] Kuznetsov, E. A., “Gyrogroups and left gyrogroups as transversals of a special kind”, Algebra Discrete Math., 2003, no. 3, 54–81 | MR

[40] Syrbu, P., “Loops with universal elasticity”, Quasigroups Relat. Syst., 1:1 (1994), 57–65 | MR

[41] Syrbu, P., “On loops with universal elasticity”, Quasigroups Relat. Syst., 3 (1996), 41–54 | MR

[42] Syrbu, P., “On middle Bol loops”, ROMAI J., 6:2 (2010), 229–236 | MR

[43] Syrbu, P. and Grecu, I., “Loops with invariant flexibility under the isostrophy”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2020, no. 1(92), 122–128 | MR

[44] Syrbu, P. and Grecu, I., “On some groups related to middle Bol loops”, Studia Universitatis Moldaviae (Seria Stiinte Exacte si Economice), 2013, no. 7(67), 10–18