Morita contexts, preradicals and closure operators in modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 83-98

Voir la notice de l'article provenant de la source Math-Net.Ru

The preradicals and closure operators in module categories are studied. The concordance is shown between the mappings connecting the classes of preradicals and of closure operators of two module categories $R$-Mod and $S$-Mod in the case of a Morita context $(R,{}_{R}U_{S}, {}_{S}V_{R},S)$, using the functors $Hom_{R}(U,-)$ and $Hom_{S}(V,-)$.
@article{BASM_2022_1_a6,
     author = {A. I. Kashu},
     title = {Morita contexts, preradicals and closure operators in modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {83--98},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2022_1_a6/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Morita contexts, preradicals and closure operators in modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2022
SP  - 83
EP  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2022_1_a6/
LA  - en
ID  - BASM_2022_1_a6
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Morita contexts, preradicals and closure operators in modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2022
%P 83-98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2022_1_a6/
%G en
%F BASM_2022_1_a6
A. I. Kashu. Morita contexts, preradicals and closure operators in modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2022), pp. 83-98. http://geodesic.mathdoc.fr/item/BASM_2022_1_a6/