Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 36-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multicriteria investment Boolean problem of minimizing lost profits with parameterized efficiency and different types of risks is formulated. The lower and upper bounds on the radius of the strong stability of efficient portfolios are obtained. Several earlier known results regarding strong stability of Pareto efficient and extreme portfolios are confirmed.
@article{BASM_2021_3_a4,
     author = {Vladimir A. Emelichev and Yury V. Nikulin},
     title = {Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {36--49},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a4/}
}
TY  - JOUR
AU  - Vladimir A. Emelichev
AU  - Yury V. Nikulin
TI  - Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 36
EP  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2021_3_a4/
LA  - en
ID  - BASM_2021_3_a4
ER  - 
%0 Journal Article
%A Vladimir A. Emelichev
%A Yury V. Nikulin
%T Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 36-49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2021_3_a4/
%G en
%F BASM_2021_3_a4
Vladimir A. Emelichev; Yury V. Nikulin. Strong stability for multiobjective investment problem with perturbed minimax risks of different types and parameterized optimality. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 36-49. http://geodesic.mathdoc.fr/item/BASM_2021_3_a4/

[1] Markowitz H., Portfolio Selection: Efficient Diversification of Investments, Yale University Press, Yale, 1959 | MR

[2] Sergienko I., Shilo V., Discrete Optimization Problems. Problems, methods, research, Naukova dumka, Kiev, 2003

[3] Emelichev V., Girlich E., Nikulin Y., Podkopaev D., “Stability and regularization of vector problem of integer linear programming”, Optimization, 51:4 (2002), 645–676 | DOI | MR | Zbl

[4] Emelichev V., Kotov V., Kuzmin K., Lebedeva T., Semenova N., Sergienko T., “Stability in the combinatorial vector optimization problems”, Journal Automation and Information Sciences, 26:2 (2004), 27–41 | DOI | MR

[5] Lebedeva T., Sergienko T., “Different types of stability of vector integer optimization problem: general approach”, Cybernetics and Systems Analysis, 44:3 (2008), 429–433 | DOI | MR | Zbl

[6] Gordeev E., “Comparison of three approaches to studying stability of solutions to problems of discrete optimization and computational geometry”, Journal of Applied and Industrial Mathematics, 9:3 (2015), 358–366 | DOI | MR | Zbl

[7] Emelichev V., Nikulin Y., “Numerical measure of strong stability and strong quasistability in the vector problem of integer linear programming”, Computer Science Journal of Moldova, 7:1 (1999), 105–117 | MR | Zbl

[8] Emelichev V., Bukhtoyarov S., Mychkov V., “An investment problem under multicriteriality, uncertainty and risk”, Bulletin of the Academy of Sciences of Moldova. Mathematics, 82:3 (2016), 82–98 | MR | Zbl

[9] Emelichev V., Podkopaev D., “Quantitative stability analysis for vector problems of 0-1 programming”, Discrete Optimization, 7:1-2 (2010), 48–63 | DOI | MR | Zbl

[10] Emelichev V., Nikulin Y., Korotkov V., “Stability analysis of efficient portfolios in a discrete variant of multicriteria investment problem with Savage's risk criteria”, Computer Science Journal of Moldova, 25:3 (2017), 303–328 | MR | Zbl

[11] Emelichev V., Gurevsky E., Platonov A., “Measure of stability for a finite cooperative game with a generalized concept of equilibrium”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 52:3 (2006), 17–26 | MR | Zbl

[12] Emelichev V., Nikulin Y., “Strong stability measures for multicriteria quadratic integer programming problem of finding extremum solutions”, Computer Science Journal of Moldova, 26:2 (2018), 115–125 | MR | Zbl

[13] Chakravarti N., Wagelmans A., “Calculation of stability radius for combinatorial optimization problems”, Operations Research Letters, 23:1 (1998), 1–7 | DOI | MR | Zbl

[14] Van Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0-1 programs”, Discrete Applied Mathematics, 91:1-3 (1999), 251–263 | DOI | MR | Zbl

[15] Libura M., Van der Poort E., Sierksma G., Van der Veen J., “Stability aspects of the traveling salesman problem based on k-best solutions”, Discrete Applied Mathematics, 87:1-3 (1998), 159–185 | DOI | MR | Zbl

[16] Podinovskii V., Noghin V., Pareto-Optimal Solutions of Multicriteria Problems, Fizmatlit, M., 2007 | MR

[17] Savage L., The Foundations of Statistics, Dover Publ., New York, 1972, 310 pp. | MR | Zbl

[18] Pareto V., Manuel D'economie Politique, V. Giard E. Briere, Paris, 1909

[19] Noghin V., Reduction of the Pareto Set: An Axiomatic Approach, Studies in Systems, Decision and Control, Springer, Cham, 2018, 232 pp. | DOI

[20] Emelichev V., Nikulin Y., “Analyzing stability of extreme portfolios”, Proceedings of OPTIMA 2021 (Montenegro, 2021) | MR