On differentially prime subsemimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 30-35

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of the notion of a differentially prime subsemimodule of a differential semimodule over a commutative semiring, which generalizes the notion of differentially prime ideal of a ring. The characterization of differentially prime subsemimodules is given. The interrelation between differentially prime subsemimodules and different types of differential subsemimodules and ideals is studied.
@article{BASM_2021_3_a3,
     author = {Ivanna Melnyk},
     title = {On differentially prime subsemimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {30--35},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a3/}
}
TY  - JOUR
AU  - Ivanna Melnyk
TI  - On differentially prime subsemimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 30
EP  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2021_3_a3/
LA  - en
ID  - BASM_2021_3_a3
ER  - 
%0 Journal Article
%A Ivanna Melnyk
%T On differentially prime subsemimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 30-35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2021_3_a3/
%G en
%F BASM_2021_3_a3
Ivanna Melnyk. On differentially prime subsemimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 30-35. http://geodesic.mathdoc.fr/item/BASM_2021_3_a3/