Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 21-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of quadratic Riccati differential equations can be found by classical numerical methods like Runge-Kutta method and the forward Euler method. Batiha et al.  [7] applied variational iteration method (VIM) for the solution of General Riccati Equation. In the paper of El-Tawil et al. [19] they used the Adomian decomposition method (ADM) to solve the nonlinear Riccati equation. In [3] Abbasbandy applied Iterated He's homotopy perturbation method for solving quadratic Riccati differential equation. In [2] Abbasbandy used the Homotopy perturbation method to get an analytic solution of the quadratic Riccati differential equation, and a comparison with Adomian's decomposition method was presented. In [1] Abbasbandy employed VIM to find the solution of the quadratic Riccati equation by using Adomian's polynomials. Tan and Abbasbandy [30] employed the Homotopy Analysis Method (HAM) to find the solution of the quadratic Riccati equation. Batiha [5] used the multistage variational iteration method (MVIM) to solve the quadratic Riccati differential equation.
@article{BASM_2021_3_a2,
     author = {Belal Batiha and Firas Ghanim},
     title = {Numerical implementation of {Daftardar-Gejji} and {Jafari} method to the quadratic {Riccati} equation},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {21--29},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a2/}
}
TY  - JOUR
AU  - Belal Batiha
AU  - Firas Ghanim
TI  - Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 21
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2021_3_a2/
LA  - en
ID  - BASM_2021_3_a2
ER  - 
%0 Journal Article
%A Belal Batiha
%A Firas Ghanim
%T Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 21-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2021_3_a2/
%G en
%F BASM_2021_3_a2
Belal Batiha; Firas Ghanim. Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 21-29. http://geodesic.mathdoc.fr/item/BASM_2021_3_a2/

[1] Abbasbandy S., “A new application of He's variational iteration method for quadratic Riccati differential equation by using Adomians polynomials”, Journal of Computational and Applied Mathematics, 207 (2007), 59–63 | DOI | MR | Zbl

[2] Abbasbandy S., “Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method”, Applied Mathematics and Computation, 172 (2006), 485–490 | DOI | MR | Zbl

[3] Abbasbandy S., “Iterated He's homotopy perturbation method for quadratic Riccati differential equation”, Applied Mathematics and Computation, 175 (2006), 581–589 | DOI | MR | Zbl

[4] Batiha B., “A variational iteration method for solving the nonlinear Klein-Gordon equation”, Australian Journal of Basic and Applied Sciences, 4:1 (2015), 24–29

[5] Batiha B., “A new efficient method for solving quadratic Riccati differential equation”, International Journal of Applied Mathematical Research, 3:4 (2009), 3876–3890 | MR

[6] Batiha B., Ghanim F., “Solving Strongly Nonlinear Oscillators by New Numerical Method”, International Journal of Pure and Applied Mathematics, 116:1 (2018), 115–124

[7] Batiha B., Noorani M. S. M., Hashim I., “Application of Variational Iteration Method to a General Riccati Equation”, International Mathematical Forum, 2 (56) (2007), 2759–2770 | DOI | MR | Zbl

[8] Batiha K., Batiha B., “A new algorithm for solving linear ordinary differential equations”, World Applied Sciences Journal, 15:12 (2011), 1774–1779

[9] Bhalekar S., Daftardar-Gejji V., “Convergence of the New Iterative Method”, International Journal of Differential Equations, 2011 (2011), 989065, 10 pp. | MR | Zbl

[10] Bhalekar S., Daftardar-Gejji V., “New iterative method: Application to partial differential equations”, Applied Mathematics and Computation, 203 (2008), 778–783 | DOI | MR | Zbl

[11] Bhalekar S., Daftardar-Gejji V., “Solving evolution equations using a new iterative method”, Numerical Methods for Partial Differential Equations, 26:4 (2010), 906–916 | MR | Zbl

[12] Bulut H., Evans D. J., “On the solution of the Riccati equation by the decomposition method”, Int. J. Comput. Math., 79 (2002), 103–109 | DOI | MR | Zbl

[13] Daftardar-Gejji V., Bhalekar S., “An iterative method for solving fractional differential equations”, PAMM. Proc. Appl. Math. Mech., 7 (2007), 2050017–2050018 | DOI

[14] Daftardar-Gejji V., Bhalekar S., “Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method”, Computers and Mathematics with Applications, 59 (2010), 1801–1809 | DOI | MR | Zbl

[15] Daftardar-Gejji V., Bhalekar S., “Solving fractional diffusion-wave equations using a new iterative method”, Fractional Calculus and Applied Analysis, 11:2 (2008), 193–202 | MR | Zbl

[16] Daftardar-Gejji V., Jafari H., “An iterative method for solving nonlinear functional equations”, J. Math. Anal. Appl., 316 (2006), 753–763 | DOI | MR | Zbl

[17] Daftardar-Gejji V., Sukale Y., Bhalekar S., “A new predictor-corrector method for fractional differential equations”, Applied Mathematics and Computation, 244:2 (2014), 158–182 | DOI | MR | Zbl

[18] Daftardar-Gejji V., Sukale Y., Bhalekar S., “Solving fractional delay differential equations: A new approach”, Fractional Calculus and Applied Analysis, 16:2 (2015), 400–418 | DOI | MR

[19] El-Tawil M. A., Bahnasawi A. A., Abdel-Naby A., “Solving Riccati differential equation using Adomian's decomposition method”, Appl Math Comput., 157:2 (2004), 503–514 | MR | Zbl

[20] Fard O. S., Sanchooli M., “Two successive schemes for numerical solution of linear fuzzy fredholm integral equations of the second kind”, Australian Journal of Basic and Applied Sciences, 4:5 (2010), 817–825

[21] Ghori M. B., Usman M., Mohyud-Din S. T., “Numerical studies for solving a predictive microbial growth model using a new iterative method”, International Journal of Modern Biology and Medicine, 5:1 (2014), 33–39

[22] Mohyud-Din S. T., Yildirim A., Hosseini S. M. M., “An iterative algorithm for fifth-order boundary value problems”, World Applied Sciences Journal, 8:5 (2010), 531–535

[23] Mohyud-Din S. T., Yildirim A., Hosseini S. M. M., “Numerical comparison of methods for Hirota-Satsuma model”, Appl. Appl. Math., 5:10 (2010), 1558–1567 | MR

[24] Noor M. A., “New iterative schemes for nonlinear equations”, Applied Mathematics and Computation, 187 (2007), 937–943 | DOI | MR | Zbl

[25] Noor M. A., Mohyud-Din S. T., “An Iterative Method for Solving Helmholtz Equations”, Arab Journal of Mathematics and Mathematical Sciences, 1:1 (2007), 13–18 | MR

[26] Noor K. I., Noor M. A., “Iterative methods with fourth-order convergence for nonlinear equations”, Applied Mathematics and Computation, 189 (2007), 221–227 | DOI | MR | Zbl

[27] Noor M. A., Noor K. I., “Three-step iterative methods for nonlinear equations”, Applied Mathematics and Computation, 183 (2006), 322–327 | DOI | MR | Zbl

[28] Noor M. A., Noor K. I., Al-Said E., Waseem M., “Some New Iterative Methods for Nonlinear Equations”, Mathematical Problems in Engineering, 2010 (2010), 198943, 12 pp. | DOI | MR | Zbl

[29] Srivastava V., Rai K. N., “A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues”, Mathematical and Computer Modelling, 51 (2010), 616–624 | DOI | MR | Zbl

[30] Tan Y., Abbasbandy S., “Homotopy analysis method for quadratic Riccati differential equation”, Communications in Nonlinear Science and Numerical Simulation, 13 (2008), 539–546 | DOI | Zbl

[31] Wang X.Y., “Exact and explicit solitary wave solutions for the generalized Fisher equation”, Journal of Physical Letter, A 131:4/5 (1988), 277–279 | DOI | MR