Unified approach to starlike and convex functions involving Poisson distribution series
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motivation behind present paper is to establish connection between analytic univalent functions $\mathcal{T}S_{p}(\zeta,\gamma,\delta)$ and $UC\mathcal{T}(\zeta,\gamma,\delta)$ by applying Hadamard product involving Poisson distribution series. We likewise consider an integral operator connection with this series.
@article{BASM_2021_3_a1,
     author = {Mallikarjun G. Shrigan and Sibel Yalcin and Sahsene Altinkaya},
     title = {Unified approach to starlike and convex functions involving {Poisson} distribution series},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {11--20},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a1/}
}
TY  - JOUR
AU  - Mallikarjun G. Shrigan
AU  - Sibel Yalcin
AU  - Sahsene Altinkaya
TI  - Unified approach to starlike and convex functions involving Poisson distribution series
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 11
EP  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2021_3_a1/
LA  - en
ID  - BASM_2021_3_a1
ER  - 
%0 Journal Article
%A Mallikarjun G. Shrigan
%A Sibel Yalcin
%A Sahsene Altinkaya
%T Unified approach to starlike and convex functions involving Poisson distribution series
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 11-20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2021_3_a1/
%G en
%F BASM_2021_3_a1
Mallikarjun G. Shrigan; Sibel Yalcin; Sahsene Altinkaya. Unified approach to starlike and convex functions involving Poisson distribution series. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 11-20. http://geodesic.mathdoc.fr/item/BASM_2021_3_a1/

[1] Altinkaya S., Yalcin S., “Poisson distribution series for analytic univalent functions”, Complex Anal. Oper. Theory, 12:5 (2017), 1315–1319 | DOI | MR

[2] Altintas O., Owa S., “On subclasses of univalent functions with negative coefficients”, Pusan Kyǒngnam Math. J., 4 (1988), 41–56 | MR

[3] Baricz A., “Geometric properties of generalized Bessel functions”, Publ. Math. Debrecen, 73 (2008), 155–178 | MR | Zbl

[4] Bharati R., Parvatham R., Swaminathan A., “On subclasses of uniformly convex functions and corresponding class of starlike functions”, Tamkang J. Math., 26:1 (1997), 17–32 | DOI | MR

[5] Cho N. E., Woo S. Y., Owa S., “Uniformly convexity properties for hypergeometric functions”, Fract. Calc. Appl. Anal., 5:3 (2002), 303–313 | MR | Zbl

[6] Deniz E., “Convexity of integral operators involving generalized Bessel functions”, Integral Transforms Spec. Funct., 24 (2013), 201–216 | DOI | MR | Zbl

[7] Dixit K. K., Pal S. K., “On a class of univalent functions related to complex order”, Indian J. Pure Appl. Math., 26:9 (1995), 889–896 | MR | Zbl

[8] Deniz E., Orhan H., Srivastava H. M., “Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions”, Taiwanese J. Math., 15 (2011), 883–917 | MR | Zbl

[9] Dziok J., Srivastava H. M., “Classes of analytic functions associated with the generalized hypergeometric function”, Appl. Math. Comput., 103 (1999), 1–13 | DOI | MR | Zbl

[10] El-Ashwah R. M., Kota W. Y., “Some applications of a Poisson distribution series on subclasses of univalent function”, J. Fract. Calc. Appl., 9:1 (2018), 169–179 | MR

[11] Kanas S. Wisniowska, “Conic regions and k-uniform convexity”, Comput. Appl. Math., 105 (1999), 327–336 | DOI | MR | Zbl

[12] Murugusundaramoorthy G., “Subclasses of starlike and convex functions involving Poisson distribution series”, Afr. Mat., 2017 | DOI | MR

[13] Murugusundaramoorthy G., Magesh N., “On certain subclass of analytic functions associated with hypergeometric functions”, Appl. Math. Lett., 24 (2011), 494–500 | DOI | MR | Zbl

[14] Murugusundaramoorthy G., Vijaya K., Porwal S., “Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series”, Hacettepe J. Math. Stat., 45:4 (2016), 1101–1107 | MR | Zbl

[15] Gangadharan A., Shanmugam T. N., Srivastava H. M., “Generalized hypergeometric functions associated with k-uniformly convex functions”, Comput. Math. Appl., 44 (2002), 1515–1526 | DOI | MR | Zbl

[16] Porwal S., “An application of a Poisson distribution series on certain analytic functions”, J. Complex Anal., 2014, 984135, 3 pp. | MR | Zbl

[17] Porwal S., Kumar M., “A unified study on starlike and convex functions associated with Poisson distribution series”, Afr. Mat., 27:5 (2016), 1021–1027 | DOI | MR | Zbl

[18] Swaminathan A., “Certain sufficiency conditions on hypergeometric functions”, J. Inequal. Pure Appl. Math., 5:4 (2004), 1–10 | MR

[19] Silverman H., “Univalent functions with negative coefficients”, Proc. Amer. Math. Soc., 51 (1975), 109–116 | DOI | MR | Zbl

[20] Subramanian K. G., Sudharsan T.V., Balasubrahmanyam P., Silverman H., “Classes of uniformly starlike functions”, Publ. Math. Debrecen, 53:4 (1998), 309–315 | MR | Zbl

[21] Subramanian K. G., Murugusundaramoorthy G., Balasubrahmanyam P., Silverman H., “Subclasses of uniformly convex and uniformly starlike functions”, Math. Japonica, 43:3 (1995), 517–522 | MR

[22] Srivastava H. M., Murugusundaramoorthy G., Sivasubramanian S., “Hypergeometric functions in the parabolic starlike and uniformly convex domains”, Integral Transforms Spec. Funct., 18 (2007), 511–520 | DOI | MR | Zbl

[23] Yagmur N., Orhan H., “Hardy space of generalized Struve functions”, Complex Var. Elliptic Equ., 59:7 (2014), 929–936 | DOI | MR | Zbl