Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2021_3_a0, author = {Mahdi Samiei and Hosein Fazaeli Moghimi}, title = {The {q.Zariski} topology on the quasi-primary spectrum of a ring}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--10}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a0/} }
TY - JOUR AU - Mahdi Samiei AU - Hosein Fazaeli Moghimi TI - The q.Zariski topology on the quasi-primary spectrum of a ring JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 3 EP - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2021_3_a0/ LA - en ID - BASM_2021_3_a0 ER -
%0 Journal Article %A Mahdi Samiei %A Hosein Fazaeli Moghimi %T The q.Zariski topology on the quasi-primary spectrum of a ring %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2021 %P 3-10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2021_3_a0/ %G en %F BASM_2021_3_a0
Mahdi Samiei; Hosein Fazaeli Moghimi. The q.Zariski topology on the quasi-primary spectrum of a ring. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/BASM_2021_3_a0/
[1] Atiyah M. F., McDonald I. G., Introduction to commutative algebra, Addison Weisley Publishing Company, Inc, 1969 | MR | Zbl
[2] Azizi A., “Strongly irreducible ideals”, J. Aust. Math. Soc., 84 (2008), 145–154 | DOI | MR | Zbl
[3] Fuchs L., “On quasi-primary ideals”, Acta Sci. Math. (Szeged), 11 (1947), 174–183 | MR | Zbl
[4] Matsumura H., Commutative ring theory, Cambridge University Press, Cambridge, 1992 | MR
[5] Zhang G., Tong W., Wang F., “Gelfand factor rings and weak Zariski topologies”, Comm. Algebra, 35:8 (2007), 2628–2645 | DOI | MR | Zbl
[6] Zhang G., Tong W., Wang F., “Spectrum of a noncommutative ring”, Comm. Algebra, 34:8 (2006), 2795–2810 | DOI | MR | Zbl