The q.Zariski topology on the quasi-primary spectrum of a ring
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 3-10
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be a commutative ring with identity. We topologize $\mathrm{q.Spec}(R)$, the quasi-primary spectrum of $R$, in a way similar to that of defining the Zariski topology on the prime spectrum of $R$, and investigate the properties of this topological space. Rings whose q.Zariski topology is respectively $T_0$, $T_1$, irreducible or Noetherian are studied, and several characterizations of such rings are given.
@article{BASM_2021_3_a0,
author = {Mahdi Samiei and Hosein Fazaeli Moghimi},
title = {The {q.Zariski} topology on the quasi-primary spectrum of a ring},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {3--10},
year = {2021},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2021_3_a0/}
}
TY - JOUR AU - Mahdi Samiei AU - Hosein Fazaeli Moghimi TI - The q.Zariski topology on the quasi-primary spectrum of a ring JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 3 EP - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/BASM_2021_3_a0/ LA - en ID - BASM_2021_3_a0 ER -
Mahdi Samiei; Hosein Fazaeli Moghimi. The q.Zariski topology on the quasi-primary spectrum of a ring. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/BASM_2021_3_a0/
[1] Atiyah M. F., McDonald I. G., Introduction to commutative algebra, Addison Weisley Publishing Company, Inc, 1969 | MR | Zbl
[2] Azizi A., “Strongly irreducible ideals”, J. Aust. Math. Soc., 84 (2008), 145–154 | DOI | MR | Zbl
[3] Fuchs L., “On quasi-primary ideals”, Acta Sci. Math. (Szeged), 11 (1947), 174–183 | MR | Zbl
[4] Matsumura H., Commutative ring theory, Cambridge University Press, Cambridge, 1992 | MR
[5] Zhang G., Tong W., Wang F., “Gelfand factor rings and weak Zariski topologies”, Comm. Algebra, 35:8 (2007), 2628–2645 | DOI | MR | Zbl
[6] Zhang G., Tong W., Wang F., “Spectrum of a noncommutative ring”, Comm. Algebra, 34:8 (2006), 2795–2810 | DOI | MR | Zbl