Maximum nontrivial convex cover number of join and corona of graphs
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 93-98
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a connected graph. We say that a set $S\subseteq X(G)$ is convex in $G$ if, for any two vertices $x,y\in S$, all vertices of every shortest path between $x$ and $y$ are in $S$. If $3\leq|S|\leq|X(G)|-1$, then $S$ is a nontrivial set. The greatest $p\geq2$ for which there is a cover of $G$ by $p$ nontrivial and convex sets is the maximum nontrivial convex cover number of $G$. In this paper, we determine the maximum nontrivial convex cover number of join and corona of graphs.
@article{BASM_2021_1_a4,
author = {Radu Buzatu},
title = {Maximum nontrivial convex cover number of join and corona of graphs},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {93--98},
publisher = {mathdoc},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2021_1_a4/}
}
TY - JOUR AU - Radu Buzatu TI - Maximum nontrivial convex cover number of join and corona of graphs JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2021 SP - 93 EP - 98 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2021_1_a4/ LA - en ID - BASM_2021_1_a4 ER -
Radu Buzatu. Maximum nontrivial convex cover number of join and corona of graphs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 93-98. http://geodesic.mathdoc.fr/item/BASM_2021_1_a4/