Maximum nontrivial convex cover number of join and corona of graphs
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 93-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a connected graph. We say that a set $S\subseteq X(G)$ is convex in $G$ if, for any two vertices $x,y\in S$, all vertices of every shortest path between $x$ and $y$ are in $S$. If $3\leq|S|\leq|X(G)|-1$, then $S$ is a nontrivial set. The greatest $p\geq2$ for which there is a cover of $G$ by $p$ nontrivial and convex sets is the maximum nontrivial convex cover number of $G$. In this paper, we determine the maximum nontrivial convex cover number of join and corona of graphs.
@article{BASM_2021_1_a4,
     author = {Radu Buzatu},
     title = {Maximum nontrivial convex cover number of join and corona of graphs},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {93--98},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2021_1_a4/}
}
TY  - JOUR
AU  - Radu Buzatu
TI  - Maximum nontrivial convex cover number of join and corona of graphs
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2021
SP  - 93
EP  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2021_1_a4/
LA  - en
ID  - BASM_2021_1_a4
ER  - 
%0 Journal Article
%A Radu Buzatu
%T Maximum nontrivial convex cover number of join and corona of graphs
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2021
%P 93-98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2021_1_a4/
%G en
%F BASM_2021_1_a4
Radu Buzatu. Maximum nontrivial convex cover number of join and corona of graphs. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2021), pp. 93-98. http://geodesic.mathdoc.fr/item/BASM_2021_1_a4/