On semigroups of endomorphisms of universal algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 75-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article the left ideals of the semigroup of endomorphisms $End (G)$ of a universal algebra $G$ are studied. The lattice $Spec^s(G)$ of saturated left ideals and the lattice $Spec^f(G)$ of full ideals of the semigroup of endomorphisms $End (G)$ of a universal algebra $G$ are introduced and characterized (Theorem 2, Corollaries 7 and 8). In a free universal algebra any left ideal is a full left ideal. Theorem 1 describes the cyclic universal algebras. Theorem 3 affirms that any semigroup with unity is isomorphic to a semigroup of endomorphisms $End (G)$ of some cyclic free universal algebra $G$.
@article{BASM_2020_3_a4,
     author = {Mitrofan M. Choban and Ion I. Valu\c{t}\u{a}},
     title = {On semigroups of endomorphisms of universal algebras},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {75--87},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_3_a4/}
}
TY  - JOUR
AU  - Mitrofan M. Choban
AU  - Ion I. Valuţă
TI  - On semigroups of endomorphisms of universal algebras
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 75
EP  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_3_a4/
LA  - en
ID  - BASM_2020_3_a4
ER  - 
%0 Journal Article
%A Mitrofan M. Choban
%A Ion I. Valuţă
%T On semigroups of endomorphisms of universal algebras
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 75-87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_3_a4/
%G en
%F BASM_2020_3_a4
Mitrofan M. Choban; Ion I. Valuţă. On semigroups of endomorphisms of universal algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 75-87. http://geodesic.mathdoc.fr/item/BASM_2020_3_a4/