Almost periodic and almost automorphic solutions of monotone differential equations with a strict monotone first integral
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 39-74

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to the study of problem of Poisson stability (in particular periodicity, quasi-periodicity, Bohr almost periodicity, almost automorphy, Levitan almost periodicity, pseudo-periodicity, almost recurrence in the sense of Bebutov, recurrence in the sense of Birkhoff, pseudo-recurrence, Poisson stability) and asymptotical Poisson stability of motions of monotone non-autonomous differential equations which admit a strict monotone first integral. This problem is solved in the framework of general non-autonomous dynamical systems.
@article{BASM_2020_3_a3,
     author = {David Cheban},
     title = {Almost periodic and almost automorphic solutions of monotone differential equations with a strict monotone first integral},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {39--74},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_3_a3/}
}
TY  - JOUR
AU  - David Cheban
TI  - Almost periodic and almost automorphic solutions of monotone differential equations with a strict monotone first integral
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 39
EP  - 74
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_3_a3/
LA  - en
ID  - BASM_2020_3_a3
ER  - 
%0 Journal Article
%A David Cheban
%T Almost periodic and almost automorphic solutions of monotone differential equations with a strict monotone first integral
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 39-74
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_3_a3/
%G en
%F BASM_2020_3_a3
David Cheban. Almost periodic and almost automorphic solutions of monotone differential equations with a strict monotone first integral. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2020), pp. 39-74. http://geodesic.mathdoc.fr/item/BASM_2020_3_a3/