Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2020), pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the commutator length of an arbitrary element of the iterated wreath product of cyclic groups $C_{p_i}, ~ p_i\in \mathbb{N} $, is equal to $1$. The commutator width of direct limit of wreath product of cyclic groups is found. This paper gives upper bounds of the commutator width $(cw(G))$ [1] of a wreath product of groups. A presentation in the form of wreath recursion [6] of Sylow $2$-subgroups $Syl_2A_{{2^{k}}}$ of $A_{{2^k}}$ is introduced. As a corollary, we obtain a short proof of the result that the commutator width is equal to $1$ for Sylow $2$-subgroups of the alternating group ${A_{{2^{k}}}}$, where $k>2$, permutation group ${S_{{2^{k}}}}$ and for Sylow $p$-subgroups $Syl_2 A_{p^k}$ and $Syl_2 S_{p^k}$. The commutator width of permutational wreath product $B \wr C_n$ is investigated. An upper bound of the commutator width of permutational wreath product $B \wr C_n$ for an arbitrary group $B$ is found.
@article{BASM_2020_1_a0,
     author = {Ruslan V. Skuratovskii},
     title = {Commutator subgroup of {Sylow} 2-subgroups of alternating group and the commutator width in the wreath product},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--16},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2020_1_a0/}
}
TY  - JOUR
AU  - Ruslan V. Skuratovskii
TI  - Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2020
SP  - 3
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2020_1_a0/
LA  - en
ID  - BASM_2020_1_a0
ER  - 
%0 Journal Article
%A Ruslan V. Skuratovskii
%T Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2020
%P 3-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2020_1_a0/
%G en
%F BASM_2020_1_a0
Ruslan V. Skuratovskii. Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2020), pp. 3-16. http://geodesic.mathdoc.fr/item/BASM_2020_1_a0/