Binary linear programming approach to graph convex covering problems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2019), pp. 54-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

A binary linear programming (BLP) formulation of graph convex covering problems is proposed for the first time. Since the general convex covering problem of a graph is NP-complete, BLP approach will facilitate the use of convex covers and partitions of graphs in different real applications.
@article{BASM_2019_3_a4,
     author = {Radu Buzatu},
     title = {Binary linear programming approach to graph convex covering problems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {54--59},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_3_a4/}
}
TY  - JOUR
AU  - Radu Buzatu
TI  - Binary linear programming approach to graph convex covering problems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 54
EP  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_3_a4/
LA  - en
ID  - BASM_2019_3_a4
ER  - 
%0 Journal Article
%A Radu Buzatu
%T Binary linear programming approach to graph convex covering problems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 54-59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_3_a4/
%G en
%F BASM_2019_3_a4
Radu Buzatu. Binary linear programming approach to graph convex covering problems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2019), pp. 54-59. http://geodesic.mathdoc.fr/item/BASM_2019_3_a4/

[1] Boltyansky V., Soltan P., Combinatorial geometry of various classes of convex sets, Shtiintsa, Kishinev, 1978 (in Russian) | MR

[2] Schrijver A., Theory of linear and integer programming, John Wiley Sons, 1998 | MR

[3] Nemhauser G., Wolsey L. A., Integer and combinatorial optimization, John Wiley Sons, 1999 | MR

[4] Artigas D., Dantas S., Dourado M. C., Szwarcfiter J. L., “Convex covers of graphs”, Matemática Contemporânea, 39, Sociedade Brasileira de Matemática, 2010, 31–38 | MR

[5] Artigas D., Dantas S., Dourado M. C., Szwarcfiter J. L., “Partitioning a graph into convex sets”, Discrete Mathematics, 311 (2011), 1968–1977 | DOI | MR | Zbl

[6] Grippo L. N., Matamala M., Safe M. D., Stein M. J., “Convex p-partitions of bipartite graphs”, Theoretical Computer Science, 609 (2016), 511–514 | DOI | MR | Zbl

[7] Buzatu R., Cataranciuc S., “Convex graph covers”, Computer Science Journal of Moldova, 23:3(69) (2015), 251–269 | MR | Zbl

[8] Buzatu R., Cataranciuc S., “Nontrivial convex covers of trees”, Bulletin of Academy of Sciences of Republic of Moldova, Mathematics, 2016, no. 3(82), 72–81 | MR | Zbl

[9] Buzatu R., Cataranciuc S., “On nontrivial covers and partitions of graphs by convex sets”, Computer Science Journal of Moldova, 26:1(76) (2018), 3–14 | MR | Zbl