Sufficient $GL(2, \mathbb{R})$-invariant center conditions for some classes of two-dimensional cubic differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 127-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The autonomous two-dimensional polynomial cubic systems of differential equations with pure imaginary eigenvalues of the Jacobian matrix at the singular point $(0,0)$ are considered in this paper. The center problem was studied for three classes of such systems: the class of cubic systems with zero divergence of the cubic homogeneities ($S_3\equiv 0$), the class of cubic systems with zero divergence of the quadratic homogeneities ($S_2\equiv 0$) and the class of cubic systems with nonzero divergence of the quadratic homogeneities ($S_2\not\equiv 0$). For these systems, sufficient $GL(2, \mathbb{R})$-invariant center conditions for the origin of coordinates of the phase plane were established.
@article{BASM_2019_2_a7,
     author = {Iurie Calin and Valeriu Baltag},
     title = {Sufficient $GL(2, \mathbb{R})$-invariant center conditions for some classes of two-dimensional cubic differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {127--136},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_2_a7/}
}
TY  - JOUR
AU  - Iurie Calin
AU  - Valeriu Baltag
TI  - Sufficient $GL(2, \mathbb{R})$-invariant center conditions for some classes of two-dimensional cubic differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 127
EP  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_2_a7/
LA  - en
ID  - BASM_2019_2_a7
ER  - 
%0 Journal Article
%A Iurie Calin
%A Valeriu Baltag
%T Sufficient $GL(2, \mathbb{R})$-invariant center conditions for some classes of two-dimensional cubic differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 127-136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_2_a7/
%G en
%F BASM_2019_2_a7
Iurie Calin; Valeriu Baltag. Sufficient $GL(2, \mathbb{R})$-invariant center conditions for some classes of two-dimensional cubic differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 127-136. http://geodesic.mathdoc.fr/item/BASM_2019_2_a7/

[1] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, Noordhoff, Groningen, 1964 | MR | Zbl

[2] Boularas D., Calin Iu., Timochouk L., Vulpe N., T-comitants of quadratic systems: A study via the translation invariants, Report 96–90, Delft University of Technology, Faculty of Technical Mathematics and Informatics, 1996, 36 pp.

[3] Sibirsky K. S., Introduction to the Algebraic Theory of Invariants of Differential Equations, Manchester University Press, 1988 | MR | Zbl

[4] Sibirsky K. S., Algebraical invariants of differential equations and matrices, Shtiintsa, Kishinev, 1976, 267 pp. (in Russian) | MR

[5] Vulpe N. I., Polynomial bases of comitants of differential systems and their applications in qualitative theory, Shtiintsa, Kishinev, 1986 (in Russian) | MR | Zbl

[6] Calin Iu., “On rational bases of $GL(2,\mathbb{R})$-comitants of planar polynomial systems of differential equations”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2003, no. 2 (42), 69–86 | MR | Zbl

[7] Baltag V., Calin Iu., “The transvectants and the integrals for Darboux systems of differential equations”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2008, no. 1(56), 4–18 | MR | Zbl

[8] Sibirsky K. S., “Center-affine invariant center and simple saddle-center conditions for a quadratic differential systems”, Dokl. Akad. Nauk SSSR, 285:4 (1985), 819–823 (in Russian) | MR

[9] Vulpe N. I., Sibirsky K. S., “Center-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities”, Dokl. Akad. Nauk SSSR, 301:6 (1988), 1297–1301 (in Russian) | MR

[10] Lloyd N. G., Christopher C. J., Devlin J., Pearson J. M., “Quadratic-like Cubic Systems”, Differential Equations and Dynamic Systems, 5:3/4 (1997), 329–345 | MR | Zbl

[11] Calin Iu., Baltag V., “The $GL(2, \mathbb{R})$-invariant center conditions for the cubic differential systems with degenerate infinity”, The Third Conference of Mathematical Society of the Republic of Moldova: dedicated to the 50th anniversary of the foundation of the Institute of Mathematics and Computer Sciense, Proceedings IMCS-50 (19–23 August 2014, Chisinau, Moldova), 175–178 | Zbl

[12] Calin Iu., Baltag V., “The center problem for some classes of cubic bidimensional differential systems”, International Conference Mathematics Information Technologies: Research and Education, MITRE-2011 (Chisinau, August 22–25, 2011), 21–23 | Zbl

[13] Calin Iu., Ciubotaru S., “The Lyapunov quantities and the center conditions for a class of bidimensional polynomial systems of diffrential equations with nonlinearities of the fourth degree”, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2017, no. 2(84), 112–130 | MR | Zbl