The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 13-40

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the real planar cubic differential systems with a non-degenerate monodromic critical point $M_0.$ In the cases when the algebraic multiplicity $m(Z)= 5$ or $m(l_1)+m(Z)\ge 5,$ where $Z=0$ is the line at infinity and $l_1=0$ is an affine real invariant straight line, we prove that the critical point $M_0$ is of the center type if and only if the first Lyapunov quantity vanishes. More over, if $m(Z)=5$ (respectively, $m(l_1)+m(Z)\ge 5,~ m(l_1)\ge j,~ j=2,3 $) then $M_0$ is a center if the cubic systems have a polynomial first integral (respectively, an integrating factor of the form $1/l_1^j$).
@article{BASM_2019_2_a1,
     author = {Alexandru \c{S}ub\u{a} and Silvia Turuta},
     title = {The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {13--40},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_2_a1/}
}
TY  - JOUR
AU  - Alexandru Şubă
AU  - Silvia Turuta
TI  - The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 13
EP  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_2_a1/
LA  - en
ID  - BASM_2019_2_a1
ER  - 
%0 Journal Article
%A Alexandru Şubă
%A Silvia Turuta
%T The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 13-40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_2_a1/
%G en
%F BASM_2019_2_a1
Alexandru Şubă; Silvia Turuta. The problem of the center for cubic differential systems with the line at infinity and an affine real invariant straight line of total algebraic multiplicity five. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2019), pp. 13-40. http://geodesic.mathdoc.fr/item/BASM_2019_2_a1/