Morita contexts and closure operators in modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 109-122

Voir la notice de l'article provenant de la source Math-Net.Ru

The relations between the classes of closure operators of two module categories $R$-Mod and $S$-Mod are studied in the case when an arbitrary Morita context $~(R,{}_R U_S,~{}_S V_R,S)$ is given. By the functors $Hom_R(U,-)$ and $Hom_S(V,-)$ two mappings are defined between the closure operators of these categories. Basic properties of these mappings are investigated.
@article{BASM_2019_1_a9,
     author = {A. I. Kashu},
     title = {Morita contexts and closure operators in modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {109--122},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Morita contexts and closure operators in modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 109
EP  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/
LA  - en
ID  - BASM_2019_1_a9
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Morita contexts and closure operators in modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 109-122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/
%G en
%F BASM_2019_1_a9
A. I. Kashu. Morita contexts and closure operators in modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 109-122. http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/