Morita contexts and closure operators in modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relations between the classes of closure operators of two module categories $R$-Mod and $S$-Mod are studied in the case when an arbitrary Morita context $~(R,{}_R U_S,~{}_S V_R,S)$ is given. By the functors $Hom_R(U,-)$ and $Hom_S(V,-)$ two mappings are defined between the closure operators of these categories. Basic properties of these mappings are investigated.
@article{BASM_2019_1_a9,
     author = {A. I. Kashu},
     title = {Morita contexts and closure operators in modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {109--122},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - Morita contexts and closure operators in modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 109
EP  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/
LA  - en
ID  - BASM_2019_1_a9
ER  - 
%0 Journal Article
%A A. I. Kashu
%T Morita contexts and closure operators in modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 109-122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/
%G en
%F BASM_2019_1_a9
A. I. Kashu. Morita contexts and closure operators in modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 109-122. http://geodesic.mathdoc.fr/item/BASM_2019_1_a9/

[1] Amitsur S. A., “Rings of quotients and Morita contexts”, J. of Algebra, 17:2 (1971), 273–298 | DOI | MR | Zbl

[2] Cohn P. M., Morita equivalence and duality, Mathematical Notes, Queen Mary College, London, 1966 | MR

[3] Dikranjan D., Tholen W., Categorical structure of closure operators, Kluwer Academic Publishers, 1995 | MR | Zbl

[4] Dikranjan D., Giuli E., “Factorizations, injectivity and completeness in categories of modules”, Commun. in Algebra, 19:1 (1991), 45–83 | DOI | MR | Zbl

[5] Faith C., Algebra: rings, modules and categories, v. I, Springer Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[6] Kashu A. I., “Closure operators in the categories of modules. Part I”, Algebra and Discrete Mathematics, 15:2 (2013), 213–228 | MR | Zbl

[7] Kashu A. I., “Closure operators in the categories of modules. Part II”, Algebra and Discrete Mathematics, 16:1 (2013), 81–95 | MR | Zbl

[8] Kashu A. I., “Morita contexts and torsions of modules”, Matem. Zametki, 28:4 (1980), 491–499 (in Russian) | MR | Zbl

[9] Lam T. Y., Lectures on modules and rings, Graduate Texts in Math., 189, Springer Verlag, New York, 1999 | DOI | MR | Zbl

[10] Morita K., “Duality for modules and its application to the theory of rings with minimum condition”, Science Reports of the Tokyo Kyoiku Daigaku, Sect. A, 6:150 (1958), 83–142 | MR | Zbl