A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 103-108

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that $2$-hypersurfaces and $3$-hypersurfaces of $W_4$-manifolds admit identical almost contact metric structures.
@article{BASM_2019_1_a8,
     author = {Mihail B. Banaru and Galina A. Banaru and Tatiana L. Melekhina},
     title = {A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {103--108},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a8/}
}
TY  - JOUR
AU  - Mihail B. Banaru
AU  - Galina A. Banaru
AU  - Tatiana L. Melekhina
TI  - A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 103
EP  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a8/
LA  - en
ID  - BASM_2019_1_a8
ER  - 
%0 Journal Article
%A Mihail B. Banaru
%A Galina A. Banaru
%A Tatiana L. Melekhina
%T A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 103-108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a8/
%G en
%F BASM_2019_1_a8
Mihail B. Banaru; Galina A. Banaru; Tatiana L. Melekhina. A note on almost contact metric $2$- and $3$-hypersurfaces in $W_4$-manifolds. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 103-108. http://geodesic.mathdoc.fr/item/BASM_2019_1_a8/