On fully idempotent semimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 39-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a semiring and $M$ an $S$-semimodule. Let $N$ and $L$ be subsemimodules of $M$. Set $N\star L:= Hom_{S}(M,L)N=\sum\{\varphi(N)\mid \varphi\in Hom_{S}(M,L)\}$. Then $N$ is called an idempotent subsemimodule of $M$, if $N=N\star N$. An $S$-semimodule $M$ is called fully idempotent if every subsemimodule of $M$ is idempotent. In this paper we study the concept of fully idempotent semimodules as a generalization of fully idempotent modules and investigate some properties of idempotent subsemimodules of multiplication semimodules.
@article{BASM_2019_1_a3,
     author = {Rafieh Razavi Nazari and Shaban Ghalandarzadeh},
     title = {On fully idempotent semimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {39--51},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a3/}
}
TY  - JOUR
AU  - Rafieh Razavi Nazari
AU  - Shaban Ghalandarzadeh
TI  - On fully idempotent semimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 39
EP  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a3/
LA  - en
ID  - BASM_2019_1_a3
ER  - 
%0 Journal Article
%A Rafieh Razavi Nazari
%A Shaban Ghalandarzadeh
%T On fully idempotent semimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 39-51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a3/
%G en
%F BASM_2019_1_a3
Rafieh Razavi Nazari; Shaban Ghalandarzadeh. On fully idempotent semimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 39-51. http://geodesic.mathdoc.fr/item/BASM_2019_1_a3/