On invariant submanifolds of $S$-manifolds
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 30-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider invariant, pseudo-parallel and Ricci generalized pseudo-parallel submanifolds of $\mathcal{S}$-manifolds. We show that the submanifolds are totally geodesic under certain conditions. Also we study an invariant submanifold of $\mathcal{S}$-manifold satisfying $Q(\sigma,R)=0$ and $Q(S,\sigma)=0$, where $S$, $R$ and $\sigma$ are the Ricci tensor, curvature tensor and the second fundamental form respectively.
@article{BASM_2019_1_a2,
     author = {Fatiha Mahi and Mohamed Belkhelfa},
     title = {On invariant submanifolds of $S$-manifolds},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {30--38},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a2/}
}
TY  - JOUR
AU  - Fatiha Mahi
AU  - Mohamed Belkhelfa
TI  - On invariant submanifolds of $S$-manifolds
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 30
EP  - 38
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a2/
LA  - en
ID  - BASM_2019_1_a2
ER  - 
%0 Journal Article
%A Fatiha Mahi
%A Mohamed Belkhelfa
%T On invariant submanifolds of $S$-manifolds
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 30-38
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a2/
%G en
%F BASM_2019_1_a2
Fatiha Mahi; Mohamed Belkhelfa. On invariant submanifolds of $S$-manifolds. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 30-38. http://geodesic.mathdoc.fr/item/BASM_2019_1_a2/