Examples of bipartite graphs which are not cyclically-interval colorable
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 123-126

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper edge $t$-coloring of an undirected, simple, finite, connected graph $G$ is a coloring of its edges with colors $1,2,...,t$ such that all colors are used, and no two adjacent edges receive the same color. A cyclically-interval $t$-coloring of a graph $G$ is a proper edge $t$-coloring of $G$ such that for each its vertex $x$ at least one of the following two conditions holds: a) the set of colors used on edges incident to $x$ is an interval of integers, b) the set of colors not used on edges incident to $x$ is an interval of integers. For any positive integer $t$, let $\mathfrak{M}_t$ be the set of graphs for which there exists a cyclically-interval $t$-coloring. Examples of bipartite graphs that do not belong to the class $\bigcup\limits_{t\geq 1}\mathfrak{M}_t$ are constructed.
@article{BASM_2019_1_a10,
     author = {R. R. Kamalian},
     title = {Examples of bipartite graphs which are not cyclically-interval colorable},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {123--126},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2019_1_a10/}
}
TY  - JOUR
AU  - R. R. Kamalian
TI  - Examples of bipartite graphs which are not cyclically-interval colorable
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2019
SP  - 123
EP  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2019_1_a10/
LA  - en
ID  - BASM_2019_1_a10
ER  - 
%0 Journal Article
%A R. R. Kamalian
%T Examples of bipartite graphs which are not cyclically-interval colorable
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2019
%P 123-126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2019_1_a10/
%G en
%F BASM_2019_1_a10
R. R. Kamalian. Examples of bipartite graphs which are not cyclically-interval colorable. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2019), pp. 123-126. http://geodesic.mathdoc.fr/item/BASM_2019_1_a10/