Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 14-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring and $\sigma$ be an endomorphism of $R$. Recall that a ring $R$ is said to be a left $\sigma$-$(S,1)$ ring if for $a,b\in R$, $ab=0$ implies that $aRb=0$ and $\sigma(a)Rb=0$. In this paper we discuss a stronger type of primary decomposition (known as transparency) of a left $\sigma$-$(S,1)$ ring $R$, and Ore extension $R[x;\sigma]$.
@article{BASM_2018_3_a1,
     author = {Vijay Kumar Bhat and Pradeep Singh and Arun Dutta},
     title = {Transparency of {Ore} extensions over left $\sigma$-$(S,1)$ rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {14--21},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2018_3_a1/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
AU  - Pradeep Singh
AU  - Arun Dutta
TI  - Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 14
EP  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2018_3_a1/
LA  - en
ID  - BASM_2018_3_a1
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%A Pradeep Singh
%A Arun Dutta
%T Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 14-21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2018_3_a1/
%G en
%F BASM_2018_3_a1
Vijay Kumar Bhat; Pradeep Singh; Arun Dutta. Transparency of Ore extensions over left $\sigma$-$(S,1)$ rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2018), pp. 14-21. http://geodesic.mathdoc.fr/item/BASM_2018_3_a1/