General method for defining finite non-commutative associative algebras of dimension~$m>1$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 95-100

Voir la notice de l'article provenant de la source Math-Net.Ru

General method for defining non-commutative finite associative algebras of arbitrary dimension $m\ge2$ is discussed. General formulas describing local unit elements (the right-, left-, and bi-side ones), square roots of zero and zero divisors are derived. For arbitrary value $m$ the single bi-side unit corresponds to every element of the algebra, except the square roots from zero. Various modifications of the multiplication operation can be assigned using different sets of the values of structural coefficients. It is proved that all of the modifications are mutually associative.
@article{BASM_2018_2_a7,
     author = {A. A. Moldovyan},
     title = {General method for defining finite non-commutative associative algebras of dimension~$m>1$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {95--100},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2018_2_a7/}
}
TY  - JOUR
AU  - A. A. Moldovyan
TI  - General method for defining finite non-commutative associative algebras of dimension~$m>1$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 95
EP  - 100
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2018_2_a7/
LA  - en
ID  - BASM_2018_2_a7
ER  - 
%0 Journal Article
%A A. A. Moldovyan
%T General method for defining finite non-commutative associative algebras of dimension~$m>1$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 95-100
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2018_2_a7/
%G en
%F BASM_2018_2_a7
A. A. Moldovyan. General method for defining finite non-commutative associative algebras of dimension~$m>1$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 95-100. http://geodesic.mathdoc.fr/item/BASM_2018_2_a7/