On statistical convergence in generalized Lacunary sequence spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 17-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we introduce and study some generalized Lacunary sequence spaces of Musielak–Orlicz function using infinite matrix over $n$-normed spaces. We also make an effort to study some inclusion relations, topological and geometric properties of these spaces. Finally, we study statistical convergence on these spaces.
@article{BASM_2018_2_a1,
     author = {K. Raj and R. Anand},
     title = {On statistical convergence in generalized {Lacunary} sequence spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {17--29},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2018_2_a1/}
}
TY  - JOUR
AU  - K. Raj
AU  - R. Anand
TI  - On statistical convergence in generalized Lacunary sequence spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 17
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2018_2_a1/
LA  - en
ID  - BASM_2018_2_a1
ER  - 
%0 Journal Article
%A K. Raj
%A R. Anand
%T On statistical convergence in generalized Lacunary sequence spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 17-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2018_2_a1/
%G en
%F BASM_2018_2_a1
K. Raj; R. Anand. On statistical convergence in generalized Lacunary sequence spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2018), pp. 17-29. http://geodesic.mathdoc.fr/item/BASM_2018_2_a1/

[1] Başarır M., Sonalcan O., “On some double sequence spaces”, J. Indian Acad. Math., 21 (1999), 193–200 | MR

[2] Bilgin T., “Some sequence spaces defined by a modulus”, Int. Math. J., 3 (2003), 305–310 | MR | Zbl

[3] Connor J. S., “The statistical and strong $p$-Cesaro convergence of sequeces”, Analysis, 8 (1988), 47–63 | DOI | MR | Zbl

[4] Çolak R., Tripathy B. C., Et M., “Lacunary strongly summable sequences and $q$-lacunary almost statistical convergence”, Vietnam J. Math., 34 (2006), 129–138 | MR | Zbl

[5] Das N. R., Choudhary A., “Matrix transformation of vector valued sequence spaces”, Bull. Calcutta Math. Soc., 84 (1992), 47–54 | MR | Zbl

[6] Dutta H., “Characterization of certain matrix classes involving generalized difference summability spaces”, Appl. Sci., 11 (2009), 60–67 | MR | Zbl

[7] Et M., Çolak R., “On some generalized difference sequence spaces”, Soochow. J. Math., 21 (1995), 377–386 | MR | Zbl

[8] Fast H., “Sur la convergence statistique”, Colloq. Math., 2 (1951), 241–244 | DOI | MR | Zbl

[9] Freedman A. R., Sember J. J., Raphael M., “Some Cesàro-type summability spaces”, Proc. London Math. Soc., 37 (1978), 508–520 | DOI | MR | Zbl

[10] Fridy J. A., “On the statistical convergence”, Analysis, 5 (1985), 301–303 | DOI | MR

[11] Gähler S., “Linear 2-normietre Rume”, Math. Nachr., 28 (1965), 1–43 | DOI | MR

[12] Güngör M., Et M., Altin Y., “Strongly $(V_\sigma;\lambda;q)$-summable sequences defined by Orlicz functions”, Appl. Math. Model. Anal., 12 (2007), 419–424 | DOI

[13] Gunawan H., Mashadi M., “On $n$-normed spaces”, Int. J. Math. Math. Sci., 27 (2001), 631–639 | DOI | MR | Zbl

[14] Kızmaz H., “On certain sequence spaces”, Canad. Math-Bull., 24 (1981), 169–176 | DOI | MR

[15] Lindenstrauss J., Tzafriri L., “On Orlicz sequence spaces”, Israel J. Math., 10 (1971), 379–390 | DOI | MR | Zbl

[16] Misiak A., “$n$-Inner product spaces”, Math. Nachr., 140 (1989), 299–319 | DOI | MR | Zbl

[17] Mursaleen M., “$\lambda-$statistical convergence”, Math. Slovaca, 50 (2000), 111–115 | MR | Zbl

[18] Mursaleen M., Edely O. H. H., “Statistical convergence of double sequences”, J. Math. Anal. Appl., 288 (2003), 223–231 | DOI | MR | Zbl

[19] Nakano H., “Concave modulars”, J. Math. Soc. Japan, 5 (1953), 29-49 | DOI | MR | Zbl

[20] Parasar S. D., Choudhary B., “Sequence spaces defined by Orlicz functions”, Indian. J. Pure Appl. Math., 25 (1994), 419–428 | MR

[21] Raj K., Sharma C., “Applications of strongly convergent sequences to Fourier series by means of modulus functions”, Acta Math. Hungar., 150 (2016), 396–411 | DOI | MR | Zbl

[22] Raj K., Jamwal S., “On some generalized statistical convergent sequence spaces”, Kuwait J. Sci., 42 (2015), 86–104 | MR

[23] Raj K., Jamwal S., Sharma S. K., “New classes of generalized sequence spaces defined by an Orlicz function”, J. Comput. Anal. Appl., 15 (2013), 730–737 | MR | Zbl

[24] Savaş E., Mursaleen M., “Matrix transformations in some sequence spaces”, Istanb. Univ. Fen Fak. Mat. Derg., 52 (1993), 1–5 | MR

[25] Schoenberg I. J., “The integrability of certain functions and related summability methods”, Amer. Math. Monthly, 66 (1959), 361–375 | DOI | MR | Zbl

[26] Tripathy B. C., Esi A., Tripathy B. K., “On a new type of generalized difference Cesáro sequence spaces”, Soochow J. Math., 31 (2005), 333–340 | MR | Zbl

[27] Tripathy B. C., Esi A., “A new type of difference sequence spaces”, Int J. Sci. Technol., 11 (2006), 11–14 | MR