Distances on free semigroups and their applications
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 92-119

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is proved that for any quasimetric $d$ on a set $X$ with a base-point $p_X$ there exists a maximal invariant extension $\hat\rho$ on the free monoid $F^a(X,\mathcal V)$ in a non-Burnside quasi-variety $\mathcal V$ of topological monoids (Theorem 6.1). This fact permits to prove that for any non-Burnside quasi-variety $\mathcal V$ of topological monoids and any $T_0$-space $X$ the free topological monoid $F(X,\mathcal V)$ exists and is abstract free (Theorem 7.1). Corollary 10.2 affirms that $F(X,\mathcal V)$, where $\mathcal V$ is a non-trivial complete non-Burnside quasi-variety of topological monoids, is a topological digital space if and only if $X$ is a topological digital space.
@article{BASM_2018_1_a7,
     author = {M. M. Choban and I. A. Budanaev},
     title = {Distances on free semigroups and their applications},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {92--119},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2018_1_a7/}
}
TY  - JOUR
AU  - M. M. Choban
AU  - I. A. Budanaev
TI  - Distances on free semigroups and their applications
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2018
SP  - 92
EP  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2018_1_a7/
LA  - en
ID  - BASM_2018_1_a7
ER  - 
%0 Journal Article
%A M. M. Choban
%A I. A. Budanaev
%T Distances on free semigroups and their applications
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2018
%P 92-119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2018_1_a7/
%G en
%F BASM_2018_1_a7
M. M. Choban; I. A. Budanaev. Distances on free semigroups and their applications. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 92-119. http://geodesic.mathdoc.fr/item/BASM_2018_1_a7/