Quartic differential systems with an invariant straight line of maximal multiplicity
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 76-91
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we show that in the class of quartic differential systems the maximal algebraic multiplicity $M_a$ of an invariant straight line is equal to 10.
@article{BASM_2018_1_a6,
author = {Alexandru \c{S}ub\u{a} and Olga Vacara\c{s}},
title = {Quartic differential systems with an invariant straight line of maximal multiplicity},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {76--91},
year = {2018},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2018_1_a6/}
}
TY - JOUR AU - Alexandru Şubă AU - Olga Vacaraş TI - Quartic differential systems with an invariant straight line of maximal multiplicity JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2018 SP - 76 EP - 91 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASM_2018_1_a6/ LA - en ID - BASM_2018_1_a6 ER -
%0 Journal Article %A Alexandru Şubă %A Olga Vacaraş %T Quartic differential systems with an invariant straight line of maximal multiplicity %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2018 %P 76-91 %N 1 %U http://geodesic.mathdoc.fr/item/BASM_2018_1_a6/ %G en %F BASM_2018_1_a6
Alexandru Şubă; Olga Vacaraş. Quartic differential systems with an invariant straight line of maximal multiplicity. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2018), pp. 76-91. http://geodesic.mathdoc.fr/item/BASM_2018_1_a6/
[1] Artes J., Grünbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific J. of Math., 184:2 (1998), 207–230 | DOI | MR | Zbl
[2] Artes J., Llibre J., “On the number of slopes of invariant straight lines for polynomial differential systems”, J. of Nanjing University, 13 (1996), 143–149 | MR | Zbl
[3] Christopher C., Llibre J., Pereira J. V., “Multiplicity of invariant algebraic curves in polynomial vector fields”, Pacific J. of Math., 329:1 (2007), 63–117 | DOI | MR
[4] Şubă A., Vacaraş O., “Cubic differential systems with an invariant straight line of maximal multiplicity”, Annals of the University of Craiova. Mathematics and Computer Science Series, 42:2 (2015), 427–449 | MR | Zbl