A note on $2$-hypersurfaces of the nearly K\"ahlerian six-sphere
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 107-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that hypersurfaces with type number two in a nearly Kählerian sphere $S^6$ admit almost contact metric structures of cosymplectic type that are non-cosymplectic.
@article{BASM_2017_3_a7,
     author = {Ahmad Abu-Saleem and Mihail B. Banaru and Galina A. Banaru},
     title = {A note on $2$-hypersurfaces of the nearly {K\"ahlerian} six-sphere},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {107--114},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a7/}
}
TY  - JOUR
AU  - Ahmad Abu-Saleem
AU  - Mihail B. Banaru
AU  - Galina A. Banaru
TI  - A note on $2$-hypersurfaces of the nearly K\"ahlerian six-sphere
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 107
EP  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_3_a7/
LA  - en
ID  - BASM_2017_3_a7
ER  - 
%0 Journal Article
%A Ahmad Abu-Saleem
%A Mihail B. Banaru
%A Galina A. Banaru
%T A note on $2$-hypersurfaces of the nearly K\"ahlerian six-sphere
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 107-114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_3_a7/
%G en
%F BASM_2017_3_a7
Ahmad Abu-Saleem; Mihail B. Banaru; Galina A. Banaru. A note on $2$-hypersurfaces of the nearly K\"ahlerian six-sphere. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 107-114. http://geodesic.mathdoc.fr/item/BASM_2017_3_a7/

[1] Abu-Saleem A., Banaru M., “Two theorems on Kenmotsu hypersurfaces in a $W_3$-manifold”, Studia Univ. Babeş–Bolyai. Math., 51:3 (2005), 3–11 | MR

[2] Abu-Saleem A., Banaru M., “Some applications of Kirichenko tensors”, Analele Univ. Oradea, Fasc. Mat., 17:2 (2010), 201–208 | MR | Zbl

[3] Abu-Saleem A., Banaru M., “On almost contact metric hypersurfaces of nearly Kählerian 6-sphere”, Malaysian Journal of Mathematical Sciences, 8:1 (2014), 35–46 | MR

[4] Banaru M., “On nearly-cosymplectic hypersurfaces in nearly-Kählerian manifolds”, Studia Univ. Babeş–Bolyai. Math., 47:3 (2002), 3–11 | MR | Zbl

[5] Banaru M., “Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra”, Sbornik Mathematics, 193:5 (2002), 635–648 | DOI | MR | Zbl

[6] Banaru M., “Sasakian hypersurfaces of six-dimensional Hermitian manifolds of the Cayley algebra”, Sbornik Mathematics, 194:8 (2003), 1125–1136 | DOI | MR | Zbl

[7] Banaru M., “The type number of the cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of the Cayley algebra”, Siberian Math. J., 44:5 (2003), 765–773 | DOI | MR | Zbl

[8] Banaru M., “On the Gray–Hervella classes of AH-structures on six-dimensional submanifolds of Cayley algebra”, Annuaire de l'universite de Sofia “St. Kl. Ohridski”, 95 (2004), 125–131 | MR | Zbl

[9] Banaru M., “Geometry of 6-dimensional Hermitian manifolds of the octave algebra”, Journal of Mathematical Sciences (New York), 207:3 (2015), 354–388 | DOI | Zbl

[10] Banaru M., “On almost contact metric 2-hypersurfaces in Kählerian manifolds”, Bulletin of the Transilvania University of Braşov. Series III. Mathematics, Informatics, Physics, 9(58):1 (2016), 1–10 | MR

[11] Banaru M., Banaru G., “A note on almost contact metric hypersurfaces of nearly Kählerian 6-sphere”, Bulletin of the Transilvania University of Braşov. Series III. Mathematics, Informatics, Physics, 8(57):2 (2015), 21–28 | MR | Zbl

[12] Blair D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Math., Birkhauser, Boston–Basel–Berlin, 2002 | MR | Zbl

[13] Gray A., “Six-dimensional almost complex manifolds defined by means of three-fold vector cross products”, Tôhoku Math. J., 21:4 (1969), 614–620 | DOI | MR | Zbl

[14] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl., 123:4 (1980), 35–58 | DOI | MR | Zbl

[15] Kirichenko V. F., “Classification of Kahlerian structures, defined by means of three-fold vector cross products on six-dimensional submanifolds of Cayley algebra”, Izvestia Vuzov. Math., 8 (1980), 32–38 | MR | Zbl

[16] Kirichenko V. F., Differential-geometrical structures on manifolds, MSPU, Moscow, 2003 (in Russian)

[17] Kirichenko V. F., Uskorev I. V., “Invariants of conformal transformations of almost contact metric structures”, Mathematical Notes, 84:6 (2008), 783–794 | DOI | MR | Zbl

[18] Kurihara H., “The type number on real hypersurfaces in a quaternionic space form”, Tsukuba J. Math., 24 (2000), 127–132 | DOI | MR | Zbl

[19] Kusova E. V., On geometry of nearly cosymplectic structures, PhD thesis, Moscow State Pedagogical University, 2013 (in Russian)

[20] Pitiş G., Geometry of Kenmotsu manifolds, Publ. House Transilvania Univ., Braşov, 2007 | MR | Zbl

[21] Stepanova L. V., Contact geometry of hypersurfaces in quasi-Kählerian manifolds, PhD thesis, MSPU, Moscow, 1995 (in Russian)