A note on the equivalence of control systems on Lie groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 63-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider state space equivalence and (a specialization of) feedback equivalence in the context of left-invariant control affine systems. Simple algebraic characterizations of both local and global forms of these equivalence relations are obtained. Several illustrative examples regarding the classification of systems on low-dimensional Lie groups are discussed in some detail.
@article{BASM_2017_3_a4,
     author = {Rory Biggs and Claudiu C. Remsing},
     title = {A note on the equivalence of control systems on {Lie} groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {63--73},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a4/}
}
TY  - JOUR
AU  - Rory Biggs
AU  - Claudiu C. Remsing
TI  - A note on the equivalence of control systems on Lie groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 63
EP  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_3_a4/
LA  - en
ID  - BASM_2017_3_a4
ER  - 
%0 Journal Article
%A Rory Biggs
%A Claudiu C. Remsing
%T A note on the equivalence of control systems on Lie groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 63-73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_3_a4/
%G en
%F BASM_2017_3_a4
Rory Biggs; Claudiu C. Remsing. A note on the equivalence of control systems on Lie groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 63-73. http://geodesic.mathdoc.fr/item/BASM_2017_3_a4/

[1] Adams R. M., Biggs R., Remsing C. C., “Equivalence of control systems on the Euclidean group $\mathsf{SE}(2)$”, Control Cybernet., 41 (2012), 514–524 | MR

[2] Adams R. M., Biggs R., Remsing C. C., “Control systems on the orthogonal group $\mathsf{SO}(4)$”, Commun. Math., 21 (2013), 107–128 | MR | Zbl

[3] Agrachev A. A., Sachkov Yu. L., Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin, 2004 | MR | Zbl

[4] Bartlett C. E., Biggs R., Remsing C. C., “Control systems on the Heisenberg group: equivalence and classification”, Publ. Math. Debrecen, 88 (2016), 217–234 | DOI | MR

[5] Bartlett C. E., Biggs R., Remsing C. C., “Control systems on nilpotent Lie groups of dimension $\leq4$: equivalence and classification”, Differential Geom. Appl., 54 (2017), 282–297 | DOI | MR | Zbl

[6] Biggs R., Nagy P. T., “A classification of sub-Riemannian structures on the Heisenberg groups”, Acta Polytech. Hungar., 10 (2013), 41–52

[7] Biggs R., Remsing C. C., “A category of control systems”, An. Şt. Univ. “Ovidius” Constanţa, 20 (2012), 355–368 | MR | Zbl

[8] Biggs R., Remsing C. C., “A note on the affine subspaces of three-dimensional Lie algebras”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 3(70), 45–52 | MR | Zbl

[9] Biggs R., Remsing C. C., “On the equivalence of cost-extended control systems on Lie groups”, Recent Researches in Automatic Control, Systems Science and Communications, Porto, Portugal, 2012, 60–65

[10] Biggs R., Remsing C. C., “Control affine systems on semisimple three-dimensional Lie groups”, An. Şt. Univ. “A. I. Cuza” Iaşi. Ser. Mat., 59 (2013), 399–414 | MR | Zbl

[11] Biggs R., Remsing C. C., “Control affine systems on solvable three-dimensional Lie groups, I”, Arch. Mat. (Brno), 49 (2013), 109–119 | MR

[12] Biggs R., Remsing C. C., “Control affine systems on solvable three-dimensional Lie groups, II”, Note Mat., 33 (2013), 19–31 | MR

[13] Biggs R., Remsing C. C., “Feedback classification of invariant control systems on three-dimensional Lie groups”, Proc. 9th IFAC Symp. Nonlinear Control Systems, Toulouse, France, 2013, 506–511 | MR

[14] Biggs R., Remsing C. C., “Cost-extended control systems on Lie groups”, Mediterr. J. Math., 11 (2014), 193–215 | DOI | MR | Zbl

[15] Biggs R., Remsing C. C., “Some remarks on the oscillator group”, Differential Geom. Appl., 35 (2014), 199–209 | DOI | MR | Zbl

[16] Biggs R., Remsing C. C., “Control systems on three-dimensional Lie groups: equivalence and controllability”, J. Dyn. Control Syst., 20 (2014), 307–339 | DOI | MR | Zbl

[17] Biggs R., Remsing C. C., “Control systems on three-dimensional Lie groups”, Proc. European Control Conf., Strasbourg, France, 2014, 2442–2447 | MR

[18] Biggs R., Remsing C. C., “On the equivalence of control systems on Lie groups”, Commun. Math., 23 (2015), 119–129 | MR | Zbl

[19] Biggs R., Remsing C. C., “Equivalence of control systems on the pseudo-orthogonal group $\mathsf{SO}(2,1)_0$”, An. Şt. Univ. “Ovidius” Constanţa, 24 (2016), 45–65 | MR | Zbl

[20] Bloch A. M., Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003 | MR | Zbl

[21] Boucetta M., Medina A., “Solutions of the Yang-Baxter equations on quadratic Lie groups: the case of oscillator groups”, J. Geom. Phys., 61 (2011), 2309–2320 | DOI | MR | Zbl

[22] Brockett R. W., “System theory on group manifolds and coset spaces”, SIAM J. Control, 10 (1972), 265–284 | DOI | MR | Zbl

[23] Bromberg S., Medina A., “Geometry of oscillator groups and locally symmetric manifold”, Geom. Dedicata, 106 (2004), 97–111 | DOI | MR | Zbl

[24] Gadea P. M., Oubiña J. A., “Homogeneous Lorentzian structures on the oscillator groups”, Arch. Math. (Basel), 73 (1999), 311–320 | DOI | MR | Zbl

[25] Hilgert J., Neeb K.-H., Structure and Geometry of Lie Groups, Springer-Verlag, New York, 2012 | MR | Zbl

[26] Jakubczyk B., “Equivalence and invariants of nonlinear control systems”, Nonlinear Controllability and Optimal Control, Marcel Dekker, New York, 1990, 177–218 | MR | Zbl

[27] Jurdjevic V., Geometric Control Theory, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[28] Jurdjevic V., Sussmann H. J., “Control systems on Lie groups”, J. Diff. Equations, 12 (1972), 313–329 | DOI | MR | Zbl

[29] Knapp A. W., Lie Groups: Beyond an Introduction, Second Edition, Birkhäuser, Boston, 2004 | MR

[30] Krener A. J., “On the equivalence of control systems and the linearization of nonlinear systems”, SIAM J. Control, 11 (1973), 670–676 | DOI | MR | Zbl

[31] Levichev A. V., “Chronogeometry of an electromagnetic wave given by a biinvariant metric on the oscillator groups”, Siberian Math. J., 27 (1986), 237–245 | DOI | MR | Zbl

[32] Puta M., “Optimal control problems on matrix Lie groups”, New Developments in Differential Geometry, Kluwer, Dordrecht, 1999, 361–373 | MR | Zbl

[33] Respondek W., Tall I. A., “Feedback equivalence of nonlinear control systems: a survey on formal approach”, Chaos in Automatic Control, CRC Press, Boca Raton, 2006, 137–262 | MR

[34] Sachkov Yu. L., “Control theory on Lie groups”, J. Math. Sci., 156 (2009), 381–439 | DOI | MR | Zbl

[35] Streater R. F., “The representations of the oscillator group”, Comm. Math. Phys., 4 (1967), 217–236 | DOI | MR | Zbl