Interpolating B\'ezier spline surfaces with local control
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 51-62

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an approach to construct interpolating spline surfaces over a bivariate network of curves with rectangular patches. Patches of the interpolating spline surface are constructed by means of blending their boundaries with special polynomials. In order to ensure a necessary parametric continuity of the designed surface the polynomials of the corresponding degree are used. The constructed interpolating spline surfaces have local shape control. If the surface frame is determined by means of Bézier curves then patches of the interpolating spline surface are Bézier surfaces.
@article{BASM_2017_3_a3,
     author = {A. P. Pobegailo},
     title = {Interpolating {B\'ezier} spline surfaces with local control},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {51--62},
     publisher = {mathdoc},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_3_a3/}
}
TY  - JOUR
AU  - A. P. Pobegailo
TI  - Interpolating B\'ezier spline surfaces with local control
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 51
EP  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_3_a3/
LA  - en
ID  - BASM_2017_3_a3
ER  - 
%0 Journal Article
%A A. P. Pobegailo
%T Interpolating B\'ezier spline surfaces with local control
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 51-62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_3_a3/
%G en
%F BASM_2017_3_a3
A. P. Pobegailo. Interpolating B\'ezier spline surfaces with local control. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2017), pp. 51-62. http://geodesic.mathdoc.fr/item/BASM_2017_3_a3/