On the inverse operations in the class of preradicals of a~module category,~II
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2017), pp. 77-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work a new operation, called left coquotient with respect to meet, in the class of preradicals $\mathbb{PR}$ of the category $R$-Mod of left $R$-modules is defined and investigated. It is dual to the studied earlier left quotient with respect to join [2]. Main properties of this operation and relations with lattice operations in $\mathbb{PR}$ are shown. Connections with some constructions in the large complete lattice $\mathbb{PR}$ are studied and some particular cases are mentioned.
@article{BASM_2017_2_a6,
     author = {Ion Jardan},
     title = {On the inverse operations in the class of preradicals of a~module {category,~II}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {77--87},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_2_a6/}
}
TY  - JOUR
AU  - Ion Jardan
TI  - On the inverse operations in the class of preradicals of a~module category,~II
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 77
EP  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_2_a6/
LA  - en
ID  - BASM_2017_2_a6
ER  - 
%0 Journal Article
%A Ion Jardan
%T On the inverse operations in the class of preradicals of a~module category,~II
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 77-87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_2_a6/
%G en
%F BASM_2017_2_a6
Ion Jardan. On the inverse operations in the class of preradicals of a~module category,~II. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2017), pp. 77-87. http://geodesic.mathdoc.fr/item/BASM_2017_2_a6/

[1] Golan J. S., Linear topologies on a ring, Logman Sci. Techn., New York, 1987 | MR

[2] Jardan I., “On the inverse operations in the class of preradicals of a module category, I”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2017, no. 1(83), 57–66 | MR

[3] Jardan I., “On the left coquotient with respect to meet for pretorsions in modules”, The 4th Conference of Mathematical Society of the Republic of Moldova,, Chisinau, Moldova, 2017, 95–98 | MR

[4] Bican L., Kepka T., Nemec P., Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl

[5] Kashu A. I., Radicals and torsions in modules, Shtiintsa, Kishinev, 1983 (in Russian) | MR

[6] Raggi F., Rios J., Rincon H., Fernandes-Alonso R., Signoret C., “The lattice structure of preradicals”, Commun. Algebra, 30:3 (2002), 1533–1544 | DOI | MR | Zbl

[7] Raggi F., Rios J., Rincon H., Fernandes-Alonso R., Signoret C., “The lattice structure of preradicals. II”, J. of Algebra and its Applications, 1:2 (2002), 201–214 | DOI | MR | Zbl

[8] Kashu A. I., “On some operations in the lattice of submodules determined by preradicals”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2011, no. 2(66), 5–16 | MR | Zbl

[9] Raggi F., Rios J., Wisbauer R., “Coprime preradicals and modules”, Journal of Pure and Applied Algebra, 200 (2005), 51–69 | DOI | MR | Zbl

[10] Kashu A. I., “On inverse operations in the lattices of submodules”, Algebra and Discrete Mathematics, 13:2 (2012), 273–288 | MR | Zbl