Radicals and generalizations of derivations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2017), pp. 54-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

By results of Slin'ko and of Anderson, the locally nilpotent and nil radicals of algebras over a field of characteristic $0$ are preserved by derivations. This note deals with radical preservation by various generalizations of derivations.
@article{BASM_2017_2_a3,
     author = {E. P. Cojuhari and B. J. Gardner},
     title = {Radicals and generalizations of derivations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {54--65},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_2_a3/}
}
TY  - JOUR
AU  - E. P. Cojuhari
AU  - B. J. Gardner
TI  - Radicals and generalizations of derivations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 54
EP  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_2_a3/
LA  - en
ID  - BASM_2017_2_a3
ER  - 
%0 Journal Article
%A E. P. Cojuhari
%A B. J. Gardner
%T Radicals and generalizations of derivations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 54-65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_2_a3/
%G en
%F BASM_2017_2_a3
E. P. Cojuhari; B. J. Gardner. Radicals and generalizations of derivations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2017), pp. 54-65. http://geodesic.mathdoc.fr/item/BASM_2017_2_a3/

[1] Abu-Saymeh S., “On Hasse–Schmidt higher derivations”, Osaka J. Math., 23:2 (1986), 503–508 | MR | Zbl

[2] Abu-Saymeh S., Ikeda M., “On the higher derivations of communitive [sic] rings”, Math. J. Okayama Univ., 29 (1987), 83–90 | MR | Zbl

[3] Anderson T., “Hereditary radicals and drivations of algebras”, Canad. J. Math., 21 (1969), 372–377 | DOI | MR | Zbl

[4] Camillo V., Hong C. Y., Kim N. K., Lee Y., Nielsen P. P., “Nilpotent ideals in polynomial and power series rings”, Proc. Amer. Math. Soc., 138 (2010), 1607–1619 | DOI | MR | Zbl

[5] Cojuhari E. P., “Monoid algebras over non-commutative rings”, Int. Electron. J. Algebra, 2 (2007), 28–53 | MR | Zbl

[6] Cojuhari E. P., Gardner B. J., “Generalized higher derivations”, Bull. Aust. Math. Soc., 86 (2012), 266–281 | DOI | MR | Zbl

[7] Divinsky N., Suliński A., “Kurosh radicals of rings with operators”, Canad. J. Math., 17 (1965), 278–280 | DOI | MR | Zbl

[8] Fuchs L., Infinite Abelian Groups, Academic Press, New York–London, 1970 | MR | Zbl

[9] Gardner B. J., Wiegandt R., Radical Theory of Rings, Marcel Dekker, New York–Basel, 2004 | MR | Zbl

[10] Hazewinkel M., “Hasse-Schmidt derivations and the Hopf algebra of non-commutative symmetric functions”, Axioms, 2012, 149–154 | DOI | Zbl

[11] Heerema N., “Derivations and embeddings of a field in its power series ring”, Proc. Amer. Math. Soc., 11 (1960), 188–194 | DOI | MR | Zbl

[12] Krempa J., “On radical properties of polynomial rings”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astromon. Phys., 20 (1972), 545–548 | MR | Zbl

[13] Krempa J., “Radicals and derivations of algebras”, Radical Theory (Eger, 1982), Colloq. Math. Soc. János Bolyai, 38, North-Holland, Amsterdam, 1985, 195–227 | MR

[14] Loy R. J., “A note on the preceding paper by J. B. Miller”, Acta. Sci. Math. (Szeged), 28 (1967), 233–236 | MR | Zbl

[15] Miller J. B., “Homomorphisms, higher derivations, and derivations”, Acta Sci. Math. (Szeged), 28 (1967), 221–231 | MR | Zbl

[16] Mirzavaziri M., “Characterization of higher derivations on algebras”, Comm. Algebra, 38 (2010), 981–987 | DOI | MR | Zbl

[17] Slin'ko A. M., “A remark on radicals and derivations of rings”, Sibirsk. Mat. Zh., 13 (1972), 1395–1397 (in Russian) | MR