A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 39-50

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study, we characterize a regular curve whose position vector can be written as a linear combination of its Serret–Frenet vectors in Euclidean $4$-space $\mathbb E^4$. We investigate such curves in terms of their curvature functions. Further, we obtain some results of $T$-constant, $N$-constant and constant ratio curves in $\mathbb E^4$.
@article{BASM_2017_1_a3,
     author = {G\"unay \"Ozt\"urk and Selin G\"urp{\i}nar and Kadri Arslan},
     title = {A new characterization of curves in {Euclidean} $4$-space~$\mathbb E^4$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {39--50},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/}
}
TY  - JOUR
AU  - Günay Öztürk
AU  - Selin Gürpınar
AU  - Kadri Arslan
TI  - A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 39
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/
LA  - en
ID  - BASM_2017_1_a3
ER  - 
%0 Journal Article
%A Günay Öztürk
%A Selin Gürpınar
%A Kadri Arslan
%T A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 39-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/
%G en
%F BASM_2017_1_a3
Günay Öztürk; Selin Gürpınar; Kadri Arslan. A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 39-50. http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/