A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study, we characterize a regular curve whose position vector can be written as a linear combination of its Serret–Frenet vectors in Euclidean $4$-space $\mathbb E^4$. We investigate such curves in terms of their curvature functions. Further, we obtain some results of $T$-constant, $N$-constant and constant ratio curves in $\mathbb E^4$.
@article{BASM_2017_1_a3,
     author = {G\"unay \"Ozt\"urk and Selin G\"urp{\i}nar and Kadri Arslan},
     title = {A new characterization of curves in {Euclidean} $4$-space~$\mathbb E^4$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {39--50},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/}
}
TY  - JOUR
AU  - Günay Öztürk
AU  - Selin Gürpınar
AU  - Kadri Arslan
TI  - A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 39
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/
LA  - en
ID  - BASM_2017_1_a3
ER  - 
%0 Journal Article
%A Günay Öztürk
%A Selin Gürpınar
%A Kadri Arslan
%T A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 39-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/
%G en
%F BASM_2017_1_a3
Günay Öztürk; Selin Gürpınar; Kadri Arslan. A new characterization of curves in Euclidean $4$-space~$\mathbb E^4$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 39-50. http://geodesic.mathdoc.fr/item/BASM_2017_1_a3/

[1] A. A. Ali, M. Önder, “Some characterization of space-like rectifying curves in the Minkowski space-time”, Global J. Sci. Front. Resh. Math. Dec. Sci., 12 (2009), 57–63

[2] B. Y. Chen, “Constant ratio Hypersurfaces”, Soochow J. Math., 28 (2001), 353–362 | MR

[3] B. Y. Chen, “Geometry of warped products as Riemannian submanifolds and related problems”, Soochow J. of Math., 28:2 (2002), 125–156 | MR | Zbl

[4] B. Y. Chen, “When does the position vector of a space curve always lies in its rectifying plane?”, Amer. Math. Monthly, 110 (2003), 147–152 | DOI | MR | Zbl

[5] B. Y. Chen, “Geometry of position function of Riemannian submanifolds in pseudo-Euclidean space”, J. Geometry, 74 (2002), 61–67 | DOI | MR

[6] B. Y. Chen, “Geometry of position function of totally real submanifolds in complex Euclidean spaces”, Kragujevac J. Math., 37 (2013), 201–215 | MR | Zbl

[7] B. Y. Chen, “More on convolution of Riemannian manifolds”, Beitrage Algebra und Geom., 44 (2003), 9–24 | MR | Zbl

[8] B. Y. Chen, F. Dillen, “Rectifying curves as centrodes and extremal curves”, Bull. Inst. Math. Acedemia Sinica, 33 (2005), 77–90 | MR | Zbl

[9] T. Erişir, M. A. Güngör, “Some characterization of quaternionic rectifying curves in the semi-euclidean space $\mathbb E_2^4$”, Honam Math. J., 36 (2014), 67–83 | DOI | MR | Zbl

[10] R. Ezentaş, S. Türkay, “Helical versus of rectifying curves in Lorentzian spaces”, Dumlıpınar Univ. Fen Bilim. Esti Dergisi, 6 (2004), 239–244

[11] A. Gray, Modern differential geometry of curves and surface, CRS Press Inc., 1993 | MR

[12] H. Gluck, “Higher curvatures of curves in Euclidean space”, Amer. Math. Monthly, 73 (1966), 699–704 | DOI | MR | Zbl

[13] S. Gürpınar, K. Arslan, G. Öztürk, “A Characterization of Constant-ratio Curves in Euclidean 3-space $\mathbb E^3$”, Acta Univ. Apulensis Math. Inform., 44 (2015), 39–51 | MR | Zbl

[14] K. Ilarslan, Ö. Boyacıoğlu, “Position vectors of a spacelike $W$-curve in Minkowski space $\mathbb E_1^3$”, Bull. Korean Math. Soc., 46 (2009), 967–978 | MR

[15] K. Ilarslan, E. Nesovic, T. M. Petrovic, “Some characterization of rectifying curves in the Minkowski 3-space”, Novi Sad J. Math., 32 (2003), 23–32 | MR

[16] K. Ilarslan, E. Nesovic, “On rectifying curves as centrodes and extremal curves in the Minkowski 3-space $\mathbb E_1^3$”, Novi. Sad. J. Math., 37 (2007), 53–64 | MR | Zbl

[17] K. Ilarslan, E. Nesovic, “Some characterization of rectifying curves in the Euclidean space $\mathbb E^4$”, Turk. J. Math., 32 (2008), 21–30 | MR | Zbl

[18] K. Ilarslan, E. Nesovic, “Some characterization of null, pseudo-null and partially null rectifying curves in Minkowski space-time”, Taiwanese J. Math., 12 (2008), 1035–1044 | DOI | MR | Zbl

[19] K. Ilarslan, E. Nesovic, “The first kind and second kind osculating curves in Minkowski space-time”, Comp. Ren. de Acad. Bul. des Sci., 62 (2009), 677–689 | MR

[20] F. Klein, S. Lie, “Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen Transformationen in sich übergehen”, Math. Ann., 4 (1871), 50–84 | DOI | MR

[21] J. Monterde, “Curves With Constant Curvature Ratios”, Bol. Soc. Mat. Mex., 13 (2007), 177–186 | MR | Zbl

[22] G. Öztürk, K. Arslan, H. Hacisalihoğlu, “A characterization of ccr-curves in $\mathbb R^n$”, Proc. Estonian Acad. Sciences, 57 (2008), 217–224 | DOI | MR | Zbl

[23] V. Rovenski, Geometry of curves and surfaces with maple, Birkhauser, London, 2000 | MR | Zbl