Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2017_1_a2, author = {Julius Fergy T. Rabago}, title = {Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {29--38}, publisher = {mathdoc}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2017_1_a2/} }
TY - JOUR AU - Julius Fergy T. Rabago TI - Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$ JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2017 SP - 29 EP - 38 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2017_1_a2/ LA - en ID - BASM_2017_1_a2 ER -
%0 Journal Article %A Julius Fergy T. Rabago %T Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$ %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2017 %P 29-38 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2017_1_a2/ %G en %F BASM_2017_1_a2
Julius Fergy T. Rabago. Forbidden set of the rational difference equation $x_{n+1}=x_nx_{n-k}/(ax_{n-k+1}+x_n x_{n-k+1}x_{n-k})$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 29-38. http://geodesic.mathdoc.fr/item/BASM_2017_1_a2/