Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 15-28

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the growth of solutions of the linear difference equation \begin{gather*} A_n(z)f(z+n)+A_{n-1}(z)f(z+n-1)\\ +\dots+A_1(z)f(z+1)+A_0(z)f(z)=0, \end{gather*} where $A_n(z),\dots,A_0(z)$ are entire or meromorphic functions of finite logarithmic order. We extend some precedent results due to Liu and Mao, Zheng and Tu, Chen and Shon and others.
@article{BASM_2017_1_a1,
     author = {Benharrat Bela{\"\i}di},
     title = {Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {15--28},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2017_1_a1/}
}
TY  - JOUR
AU  - Benharrat Belaïdi
TI  - Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2017
SP  - 15
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2017_1_a1/
LA  - en
ID  - BASM_2017_1_a1
ER  - 
%0 Journal Article
%A Benharrat Belaïdi
%T Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2017
%P 15-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2017_1_a1/
%G en
%F BASM_2017_1_a1
Benharrat Belaïdi. Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2017), pp. 15-28. http://geodesic.mathdoc.fr/item/BASM_2017_1_a1/