Nontrivial convex covers of trees
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 72-81

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions for the existence of nontrivial convex covers and nontrivial convex partitions of trees. We prove that a tree $G$ on $n\ge4$ vertices has a nontrivial convex $p$-cover for every $p$, $2\le p\le\varphi_{cn}^{max}(G)$. Also, we prove that it can be decided in polynomial time whether a tree on $n\ge6$ vertices has a nontrivial convex $p$-partition, for a fixed $p$, $2\le p\le \lfloor\frac n3\rfloor$.
@article{BASM_2016_3_a5,
     author = {Radu Buzatu and Sergiu Cataranciuc},
     title = {Nontrivial convex covers of trees},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {72--81},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a5/}
}
TY  - JOUR
AU  - Radu Buzatu
AU  - Sergiu Cataranciuc
TI  - Nontrivial convex covers of trees
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 72
EP  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_3_a5/
LA  - en
ID  - BASM_2016_3_a5
ER  - 
%0 Journal Article
%A Radu Buzatu
%A Sergiu Cataranciuc
%T Nontrivial convex covers of trees
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 72-81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_3_a5/
%G en
%F BASM_2016_3_a5
Radu Buzatu; Sergiu Cataranciuc. Nontrivial convex covers of trees. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 72-81. http://geodesic.mathdoc.fr/item/BASM_2016_3_a5/