Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 57-71
Voir la notice de l'article provenant de la source Math-Net.Ru
The general integral for ternary differential system with quadratic nonlinearities of the Darboux form was constructed by using the Lie theorem on integrating factor. The case is achieved when the comitant of the linear part of differential system, which is a $GL(3,\mathbb R)$-invariant particular integral, describes an invariant variety.
@article{BASM_2016_3_a4,
author = {Natalia Neagu},
title = {Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the {Darboux} form},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {57--71},
publisher = {mathdoc},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/}
}
TY - JOUR AU - Natalia Neagu TI - Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 57 EP - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/ LA - en ID - BASM_2016_3_a4 ER -
%0 Journal Article %A Natalia Neagu %T Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 57-71 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/ %G en %F BASM_2016_3_a4
Natalia Neagu. Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 57-71. http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/