Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 57-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general integral for ternary differential system with quadratic nonlinearities of the Darboux form was constructed by using the Lie theorem on integrating factor. The case is achieved when the comitant of the linear part of differential system, which is a $GL(3,\mathbb R)$-invariant particular integral, describes an invariant variety.
@article{BASM_2016_3_a4,
     author = {Natalia Neagu},
     title = {Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the {Darboux} form},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {57--71},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/}
}
TY  - JOUR
AU  - Natalia Neagu
TI  - Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 57
EP  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/
LA  - en
ID  - BASM_2016_3_a4
ER  - 
%0 Journal Article
%A Natalia Neagu
%T Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 57-71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/
%G en
%F BASM_2016_3_a4
Natalia Neagu. Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 57-71. http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/

[1] Gerştega N., Popa M. N., “Lie algebras of the operators and three-dimensional polynomial differential system”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2005, no. 2(48), 51–64 | MR

[2] Gerştega N., Lie algebras for the three-dimensional differential system and applications, Synopsis of PhD thesis, Chişinău, 2006, 21 pp.

[3] Nordhoff, 1964 | MR

[4] Gerştega N., Popa M. N., “Mixed comitants and $GL(3,\mathbb R)$-orbit's dimensions for the three-dimensional differential system”, Buletin Ştiinţific Universitatea din Piteşti, Seria Matematică şi Informatică, 9 (2003), 149–154

[5] Popa M. N., Invariant processes of differential systems and their applications in qualitative theory, Ştiinţa, Chişinău, 2014 (in Russian) | MR

[6] Neagu N., Popa M. N., “Canonical form of the ternary generalized differential Lyapunov–Darboux system with quadratic nonlinearities”, ROMAI Journal, 11:2 (2015), 89–107 | MR