Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_3_a4, author = {Natalia Neagu}, title = {Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the {Darboux} form}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {57--71}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/} }
TY - JOUR AU - Natalia Neagu TI - Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 57 EP - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/ LA - en ID - BASM_2016_3_a4 ER -
%0 Journal Article %A Natalia Neagu %T Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 57-71 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/ %G en %F BASM_2016_3_a4
Natalia Neagu. Invariant integrability conditions for ternary differential systems with quadratic nonlinearities of the Darboux form. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 57-71. http://geodesic.mathdoc.fr/item/BASM_2016_3_a4/
[1] Gerştega N., Popa M. N., “Lie algebras of the operators and three-dimensional polynomial differential system”, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2005, no. 2(48), 51–64 | MR
[2] Gerştega N., Lie algebras for the three-dimensional differential system and applications, Synopsis of PhD thesis, Chişinău, 2006, 21 pp.
[3] Nordhoff, 1964 | MR
[4] Gerştega N., Popa M. N., “Mixed comitants and $GL(3,\mathbb R)$-orbit's dimensions for the three-dimensional differential system”, Buletin Ştiinţific Universitatea din Piteşti, Seria Matematică şi Informatică, 9 (2003), 149–154
[5] Popa M. N., Invariant processes of differential systems and their applications in qualitative theory, Ştiinţa, Chişinău, 2014 (in Russian) | MR
[6] Neagu N., Popa M. N., “Canonical form of the ternary generalized differential Lyapunov–Darboux system with quadratic nonlinearities”, ROMAI Journal, 11:2 (2015), 89–107 | MR