Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 38-56
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper cubic systems which have degenerate infinity and invariant straight lines of total multiplicity five are classified. It is proved that, modulo affine transformations and time rescaling, there are 24 classes of such systems. For every class the qualitative investigation was carried out in the Poincaré disc.
@article{BASM_2016_3_a3,
author = {Alexandru \c{S}ub\u{a} and Vadim Repe\c{s}co},
title = {Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {38--56},
publisher = {mathdoc},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/}
}
TY - JOUR AU - Alexandru Şubă AU - Vadim Repeşco TI - Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 38 EP - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/ LA - en ID - BASM_2016_3_a3 ER -
%0 Journal Article %A Alexandru Şubă %A Vadim Repeşco %T Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 38-56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/ %G en %F BASM_2016_3_a3
Alexandru Şubă; Vadim Repeşco. Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 38-56. http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/