Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 38-56

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper cubic systems which have degenerate infinity and invariant straight lines of total multiplicity five are classified. It is proved that, modulo affine transformations and time rescaling, there are 24 classes of such systems. For every class the qualitative investigation was carried out in the Poincaré disc.
@article{BASM_2016_3_a3,
     author = {Alexandru \c{S}ub\u{a} and Vadim Repe\c{s}co},
     title = {Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {38--56},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/}
}
TY  - JOUR
AU  - Alexandru Şubă
AU  - Vadim Repeşco
TI  - Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 38
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/
LA  - en
ID  - BASM_2016_3_a3
ER  - 
%0 Journal Article
%A Alexandru Şubă
%A Vadim Repeşco
%T Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 38-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/
%G en
%F BASM_2016_3_a3
Alexandru Şubă; Vadim Repeşco. Cubic systems with degenerate infinity and invariant straight lines of total parallel multiplicity five. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 38-56. http://geodesic.mathdoc.fr/item/BASM_2016_3_a3/