Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2016_3_a1, author = {B. Z. Shavarovskii}, title = {On invariants and canonical form of matrices of second order with respect to semiscalar equivalence}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {12--23}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/} }
TY - JOUR AU - B. Z. Shavarovskii TI - On invariants and canonical form of matrices of second order with respect to semiscalar equivalence JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 12 EP - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/ LA - en ID - BASM_2016_3_a1 ER -
%0 Journal Article %A B. Z. Shavarovskii %T On invariants and canonical form of matrices of second order with respect to semiscalar equivalence %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 12-23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/ %G en %F BASM_2016_3_a1
B. Z. Shavarovskii. On invariants and canonical form of matrices of second order with respect to semiscalar equivalence. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 12-23. http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/
[1] Kazimirs'kii P. S., Petrychkovych V. M., “On the equivalence of polynomial matrices”, Theoretical and Applied Problems in Algebra and Differential Equations, Naukova Dumka, Kyiv, 1977, 61–66 | MR
[2] Kazimirs'kii P. S., Factorization of Matrix Polynomials, Naukova Dumka, Kyiv, 1981
[3] Baratchart L., “Un theoreme de factorisation et son application a la representa tion des systemes cuclique causaux”, C. R. Acad. Sci. Paris, Ser. 1, Math., 295:3 (1982), 223–226 | MR | Zbl
[4] Dias da Silva J. A., Laffey T. J., “On simultaneous similarity of matrices and related questions”, Linear Algebra Appl., 291 (1999), 167–184 | DOI | MR | Zbl
[5] Petrychkovych V. M., “On the semiscslar equivalence and normal Smith form of polynomials matrices”, Mathematical Methods and Physicomechanical Fields, 26 (1987), 13–16 | MR
[6] Petrychkovych V. M., “The semiscslar equivalence and factorization of matrix polynomials”, Ukrainian Mathematical Journal, 42:5 (1990), 644–649 | MR
[7] Shavarovskii B. Z., “On the semiscslar and quasi-diagonal equivalences of matrices”, Ukrainian Mathematical Journal, 52:10 (2000), 435–1440 | DOI | MR
[8] Shavarovskii B. Z., “On Some “Tame” and “Wild” Aspects of the Problem of Semiscalar Equivalence of Polynomial Matrices”, Mathematical Notes, 76:1–2 (2004), 111–123 | DOI | MR | Zbl