On invariants and canonical form of matrices of second order with respect to semiscalar equivalence
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 12-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We indicate a complete system of invariants and suggest a canonical form for one class of polynomial matrices of second order with respect to semiscalar equivalence.
@article{BASM_2016_3_a1,
     author = {B. Z. Shavarovskii},
     title = {On invariants and canonical form of matrices of second order with respect to semiscalar equivalence},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {12--23},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/}
}
TY  - JOUR
AU  - B. Z. Shavarovskii
TI  - On invariants and canonical form of matrices of second order with respect to semiscalar equivalence
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 12
EP  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/
LA  - en
ID  - BASM_2016_3_a1
ER  - 
%0 Journal Article
%A B. Z. Shavarovskii
%T On invariants and canonical form of matrices of second order with respect to semiscalar equivalence
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 12-23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/
%G en
%F BASM_2016_3_a1
B. Z. Shavarovskii. On invariants and canonical form of matrices of second order with respect to semiscalar equivalence. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 12-23. http://geodesic.mathdoc.fr/item/BASM_2016_3_a1/

[1] Kazimirs'kii P. S., Petrychkovych V. M., “On the equivalence of polynomial matrices”, Theoretical and Applied Problems in Algebra and Differential Equations, Naukova Dumka, Kyiv, 1977, 61–66 | MR

[2] Kazimirs'kii P. S., Factorization of Matrix Polynomials, Naukova Dumka, Kyiv, 1981

[3] Baratchart L., “Un theoreme de factorisation et son application a la representa tion des systemes cuclique causaux”, C. R. Acad. Sci. Paris, Ser. 1, Math., 295:3 (1982), 223–226 | MR | Zbl

[4] Dias da Silva J. A., Laffey T. J., “On simultaneous similarity of matrices and related questions”, Linear Algebra Appl., 291 (1999), 167–184 | DOI | MR | Zbl

[5] Petrychkovych V. M., “On the semiscslar equivalence and normal Smith form of polynomials matrices”, Mathematical Methods and Physicomechanical Fields, 26 (1987), 13–16 | MR

[6] Petrychkovych V. M., “The semiscslar equivalence and factorization of matrix polynomials”, Ukrainian Mathematical Journal, 42:5 (1990), 644–649 | MR

[7] Shavarovskii B. Z., “On the semiscslar and quasi-diagonal equivalences of matrices”, Ukrainian Mathematical Journal, 52:10 (2000), 435–1440 | DOI | MR

[8] Shavarovskii B. Z., “On Some “Tame” and “Wild” Aspects of the Problem of Semiscalar Equivalence of Polynomial Matrices”, Mathematical Notes, 76:1–2 (2004), 111–123 | DOI | MR | Zbl