On ($\sigma$-$\delta$)-rings over Noetherian rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
For a ring $R$, an endomorphism $\sigma$ of $R$ and a $\sigma$-derivation $\delta$ of $R$, we introduce ($\sigma$-$\delta$)-ring and ($\sigma$-$\delta$)-rigid ring which are the generalizations of $\sigma(*)$-rings and $\delta$-rings, and investigate their properties. Moreover, we prove that a ($\sigma$-$\delta$)-ring is $2$-primal and its prime radical is completely semiprime.
@article{BASM_2016_3_a0,
author = {Vijay Kumar Bhat and Meeru Abrol and Latif Hanna and Maryam Alkandari},
title = {On ($\sigma$-$\delta$)-rings over {Noetherian} rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {3--11},
publisher = {mathdoc},
number = {3},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/}
}
TY - JOUR AU - Vijay Kumar Bhat AU - Meeru Abrol AU - Latif Hanna AU - Maryam Alkandari TI - On ($\sigma$-$\delta$)-rings over Noetherian rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2016 SP - 3 EP - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/ LA - en ID - BASM_2016_3_a0 ER -
%0 Journal Article %A Vijay Kumar Bhat %A Meeru Abrol %A Latif Hanna %A Maryam Alkandari %T On ($\sigma$-$\delta$)-rings over Noetherian rings %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2016 %P 3-11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/ %G en %F BASM_2016_3_a0
Vijay Kumar Bhat; Meeru Abrol; Latif Hanna; Maryam Alkandari. On ($\sigma$-$\delta$)-rings over Noetherian rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 3-11. http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/