On ($\sigma$-$\delta$)-rings over Noetherian rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

For a ring $R$, an endomorphism $\sigma$ of $R$ and a $\sigma$-derivation $\delta$ of $R$, we introduce ($\sigma$-$\delta$)-ring and ($\sigma$-$\delta$)-rigid ring which are the generalizations of $\sigma(*)$-rings and $\delta$-rings, and investigate their properties. Moreover, we prove that a ($\sigma$-$\delta$)-ring is $2$-primal and its prime radical is completely semiprime.
@article{BASM_2016_3_a0,
     author = {Vijay Kumar Bhat and Meeru Abrol and Latif Hanna and Maryam Alkandari},
     title = {On ($\sigma$-$\delta$)-rings over {Noetherian} rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--11},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
AU  - Meeru Abrol
AU  - Latif Hanna
AU  - Maryam Alkandari
TI  - On ($\sigma$-$\delta$)-rings over Noetherian rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2016
SP  - 3
EP  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/
LA  - en
ID  - BASM_2016_3_a0
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%A Meeru Abrol
%A Latif Hanna
%A Maryam Alkandari
%T On ($\sigma$-$\delta$)-rings over Noetherian rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2016
%P 3-11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/
%G en
%F BASM_2016_3_a0
Vijay Kumar Bhat; Meeru Abrol; Latif Hanna; Maryam Alkandari. On ($\sigma$-$\delta$)-rings over Noetherian rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2016), pp. 3-11. http://geodesic.mathdoc.fr/item/BASM_2016_3_a0/